Search results
Results from the WOW.Com Content Network
Caesium-137 (137 55 Cs), cesium-137 (US), [7] or radiocaesium, is a radioactive isotope of caesium that is formed as one of the more common fission products by the nuclear fission of uranium-235 and other fissionable isotopes in nuclear reactors and nuclear weapons.
Figure 1: Sodium iodide gamma spectrum of caesium-137 (137 Cs) An example of a NaI spectrum is the gamma spectrum of the caesium isotope 137 Cs —see Figure 1. 137 Cs emits a single gamma line of 662 keV. The 662 keV line shown is actually produced by 137m Ba, the decay product of 137 Cs, which is in secular equilibrium with 137 Cs.
The low decay energy, lack of gamma radiation, and long half-life of 135 Cs make this isotope much less hazardous than 137 Cs or 134 Cs. Its precursor 135 Xe has a high fission product yield (e.g., 6.3333% for 235 U and thermal neutrons ) but also has the highest known thermal neutron capture cross section of any nuclide.
Caesium-137 is one such radionuclide. It has a half-life of 30 years, and decays by beta decay without gamma ray emission to a metastable state of barium-137 (137m Ba). Barium-137m has a half-life of a 2.6 minutes and is responsible for all of the gamma ray emission in this decay sequence. The ground state of barium-137 is stable.
The decay scheme of a radioactive substance is a graphical presentation of all the transitions occurring in a decay, and of their relationships. Examples are shown below. It is useful to think of the decay scheme as placed in a coordinate system, where the vertical axis is energy, increasing from bottom to top, and the horizontal axis is the proton number, increasing from left to right.
As caesium 133, 135, and 137 are formed by the beta particle decay of the corresponding xenon isotopes, this causes the caesium to become physically separated from the bulk of the uranium oxide fuel. Because 135 Xe is a potent nuclear poison with the largest cross section for thermal neutron absorption, the buildup of 135 Xe in the fuel inside ...
Internal conversion is an atomic decay process where an excited nucleus interacts electromagnetically with one of the orbital electrons of an atom. This causes the electron to be emitted (ejected) from the atom.
137 Cs: 30.17 y: Source of most of the decay heat from years to decades after irradiation, together with 90 Sr. 6.0507%: Technetium: 99 Tc: 211 ky: Candidate for disposal by nuclear transmutation. 5.7518%: Strontium: 90 Sr: 28.9 y: Source of much of the decay heat together with 137 Cs on the timespan of years to decades