enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Root mean square deviation - Wikipedia

    en.wikipedia.org/wiki/Root_mean_square_deviation

    Though there is no consistent means of normalization in the literature, common choices are the mean or the range (defined as the maximum value minus the minimum value) of the measured data: [4] N R M S D = R M S D y max − y min {\displaystyle \mathrm {NRMSD} ={\frac {\mathrm {RMSD} }{y_{\max }-y_{\min }}}} or N R M S D = R M S D y ...

  3. Mean absolute difference - Wikipedia

    en.wikipedia.org/wiki/Mean_absolute_difference

    The mean absolute difference (univariate) is a measure of statistical dispersion equal to the average absolute difference of two independent values drawn from a probability distribution. A related statistic is the relative mean absolute difference , which is the mean absolute difference divided by the arithmetic mean , and equal to twice the ...

  4. Least absolute deviations - Wikipedia

    en.wikipedia.org/wiki/Least_absolute_deviations

    Least absolute deviations (LAD), also known as least absolute errors (LAE), least absolute residuals (LAR), or least absolute values (LAV), is a statistical optimality criterion and a statistical optimization technique based on minimizing the sum of absolute deviations (also sum of absolute residuals or sum of absolute errors) or the L 1 norm of such values.

  5. Mean squared prediction error - Wikipedia

    en.wikipedia.org/wiki/Mean_squared_prediction_error

    Main page; Contents; Current events; Random article; About Wikipedia; Contact us

  6. Brier score - Wikipedia

    en.wikipedia.org/wiki/Brier_score

    A skill score for a given underlying score is an offset and (negatively-) scaled variant of the underlying score such that a skill score value of zero means that the score for the predictions is merely as good as that of a set of baseline or reference or default predictions, while a skill score value of one (100%) represents the best possible ...

  7. Mean squared error - Wikipedia

    en.wikipedia.org/wiki/Mean_squared_error

    The MSE either assesses the quality of a predictor (i.e., a function mapping arbitrary inputs to a sample of values of some random variable), or of an estimator (i.e., a mathematical function mapping a sample of data to an estimate of a parameter of the population from which the data is sampled).

  8. Kabsch algorithm - Wikipedia

    en.wikipedia.org/wiki/Kabsch_algorithm

    Let P and Q be two sets, each containing N points in .We want to find the transformation from Q to P.For simplicity, we will consider the three-dimensional case (=).The sets P and Q can each be represented by N × 3 matrices with the first row containing the coordinates of the first point, the second row containing the coordinates of the second point, and so on, as shown in this matrix:

  9. Symmetric mean absolute percentage error - Wikipedia

    en.wikipedia.org/wiki/Symmetric_mean_absolute...

    where A t is the actual value and F t is the forecast value. The absolute difference between A t and F t is divided by half the sum of absolute values of the actual value A t and the forecast value F t. The value of this calculation is summed for every fitted point t and divided again by the number of fitted points n.