enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Table of prime factors - Wikipedia

    en.wikipedia.org/wiki/Table_of_prime_factors

    A perfect power has a common divisor m > 1 for all multiplicities (it is of the form a m for some a > 1 and m > 1). The first: 4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 81, 100 (sequence A001597 in the OEIS). 1 is sometimes included. A powerful number (also called squareful) has multiplicity above 1 for all prime factors. The first: 1, 4, 8, 9, 16 ...

  3. List of Mersenne primes and perfect numbers - Wikipedia

    en.wikipedia.org/wiki/List_of_Mersenne_primes...

    For example, 3 is a Mersenne prime as it is a prime number and is expressible as 2 2 − 1. [1] [2] The exponents p corresponding to Mersenne primes must themselves be prime, although the vast majority of primes p do not lead to Mersenne primes—for example, 2 11 − 1 = 2047 = 23 × 89. [3]

  4. List of integer sequences - Wikipedia

    en.wikipedia.org/wiki/List_of_integer_sequences

    Name First elements Short description OEIS Mersenne prime exponents : 2, 3, 5, 7, 13, 17, 19, 31, 61, 89, ... Primes p such that 2 p − 1 is prime.: A000043 ...

  5. 28 (number) - Wikipedia

    en.wikipedia.org/wiki/28_(number)

    The number 28 depicted as 28 balls arranged in a triangular pattern with the number of layers of 7 28 as the sum of four nonzero squares. Twenty-eight is a composite number and the second perfect number as it is the sum of its proper divisors: 1 + 2 + 4 + 7 + 14 = 28 {\displaystyle 1+2+4+7+14=28} .

  6. Prime number - Wikipedia

    en.wikipedia.org/wiki/Prime_number

    Methods that are restricted to specific number forms include Pépin's test for Fermat numbers (1877), [27] Proth's theorem (c. 1878), [28] the Lucas–Lehmer primality test (originated 1856), and the generalized Lucas primality test. [17] Since 1951 all the largest known primes have been found using these tests on computers.

  7. Composite number - Wikipedia

    en.wikipedia.org/wiki/Composite_number

    If none of its prime factors are repeated, it is called squarefree. (All prime numbers and 1 are squarefree.) For example, 72 = 2 3 × 3 2, all the prime factors are repeated, so 72 is a powerful number. 42 = 2 × 3 × 7, none of the prime factors are repeated, so 42 is squarefree. Euler diagram of numbers under 100:

  8. How To Use the 28/36 Rule To Determine How Much House ... - AOL

    www.aol.com/finance/28-36-rule-determine-much...

    The 28/36 rule says your total housing costs shouldn’t exceed 28% of your gross income, and your total debt shouldn’t exceed 36%. ... multiply that by 0.28 to find the maximum amount you ...

  9. Triangular number - Wikipedia

    en.wikipedia.org/wiki/Triangular_number

    The final digit of a triangular number is 0, 1, 3, 5, 6, or 8, and thus such numbers never end in 2, 4, 7, or 9. A final 3 must be preceded by a 0 or 5; a final 8 must be preceded by a 2 or 7. In base 10, the digital root of a nonzero triangular number is always 1, 3, 6, or 9. Hence, every triangular number is either divisible by three or has a ...