enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. GPT-2 - Wikipedia

    en.wikipedia.org/wiki/GPT-2

    GPT-2 can generate thematically appropriate text for a range of scenarios, even surreal ones like a CNN article about Donald Trump giving a speech praising the anime character Asuka Langley Soryu. Here, the tendency to generate nonsensical and repetitive text with increasing output length (even in the full 1.5B model) can be seen; in the second ...

  3. Hugging Face - Wikipedia

    en.wikipedia.org/wiki/Hugging_Face

    Hugging Face, Inc. is an American company incorporated under the Delaware General Corporation Law [1] ... translation, multiple choice, and text generation. ...

  4. List of large language models - Wikipedia

    en.wikipedia.org/wiki/List_of_large_language_models

    A large language model (LLM) is a type of machine learning model designed for natural language processing tasks such as language generation. LLMs are language models with many parameters, and are trained with self-supervised learning on a vast amount of text. This page lists notable large language models.

  5. Top-p sampling - Wikipedia

    en.wikipedia.org/wiki/Top-p_sampling

    Top-p sampling, also called nucleus sampling, is a technique for autoregressive language model decoding proposed by Ari Holtzman in 2019. [1]Before the introduction of nucleus sampling, maximum likelihood decoding and beam search were the standard techniques for text generation, but, both of these decoding strategies are prone to generating texts that are repetitive and otherwise unnatural.

  6. Flux (text-to-image model) - Wikipedia

    en.wikipedia.org/wiki/Flux_(text-to-image_model)

    Flux (also known as FLUX.1) is a text-to-image model developed by Black Forest Labs, based in Freiburg im Breisgau, Germany. Black Forest Labs were founded by former employees of Stability AI . As with other text-to-image models, Flux generates images from natural language descriptions, called prompts .

  7. BLOOM (language model) - Wikipedia

    en.wikipedia.org/wiki/BLOOM_(language_model)

    BigScience Large Open-science Open-access Multilingual Language Model (BLOOM) [1] [2] is a 176-billion-parameter transformer-based autoregressive large language model (LLM). The model, as well as the code base and the data used to train it, are distributed under free licences. [3]

  8. Generative pre-trained transformer - Wikipedia

    en.wikipedia.org/wiki/Generative_pre-trained...

    Generative pretraining (GP) was a long-established concept in machine learning applications. [16] [17] It was originally used as a form of semi-supervised learning, as the model is trained first on an unlabelled dataset (pretraining step) by learning to generate datapoints in the dataset, and then it is trained to classify a labelled dataset.

  9. GPT-J - Wikipedia

    en.wikipedia.org/wiki/GPT-J

    GPT-J was designed to generate English text from a prompt. It was not designed for translating or generating text in other languages or for performance without first fine-tuning the model for a specific task. [2] Nonetheless, GPT-J performs reasonably well even without fine-tuning, even in translation (at least from English to French). [9]