Search results
Results from the WOW.Com Content Network
There is also a Fleming's left-hand rule (for electric motors). The appropriately handed rule can be recalled from the letter "g", which is in "right" and "generator". These mnemonics are named after British engineer John Ambrose Fleming, who invented them. An equivalent version of Fleming's right-hand rule is the left-hand palm rule. [2]
Faraday's law of induction (or simply Faraday's law) is a law of electromagnetism predicting how a magnetic field will interact with an electric circuit to produce an electromotive force (emf). This phenomenon, known as electromagnetic induction , is the fundamental operating principle of transformers , inductors , and many types of electric ...
The various FBI mnemonics (for electric motors) show the direction of the force on a conductor carrying a current in a magnetic field as predicted by Fleming's left hand rule for motors [1] and Faraday's law of induction. Other mnemonics exist that use a right hand rule for predicting resulting motion from a preexisting current and field.
[15] [16] Maxwell's extension to the law states that a time-varying electric field can also generate a magnetic field. [12] Similarly, Faraday's law of induction states that a magnetic field can produce an electric current. For example, a magnet pushed in and out of a coil of wires can produce an electric current in the coils which is ...
In three dimensions, the derivative has a special structure allowing the introduction of a cross product: = + = + from which it is easily seen that Gauss's law is the scalar part, the Ampère–Maxwell law is the vector part, Faraday's law is the pseudovector part, and Gauss's law for magnetism is the pseudoscalar part of the equation.
Fleming's rules are a pair of visual mnemonics for determining the relative directions of magnetic field, electric current, and velocity of a conductor. [1]There are two rules, one is Fleming's left-hand rule for motors which applies to situations where an electric current induces motion in the conductor in the presence of magnetic fields (Lorentz force).
A different implementation of this idea is the Faraday's disc, shown in simplified form on the right. In the Faraday's disc example, the disc is rotated in a uniform magnetic field perpendicular to the disc, causing a current to flow in the radial arm due to the Lorentz force. Mechanical work is necessary to drive this current.
The first equation listed above corresponds to both Gauss's Law (for β = 0) and the Ampère-Maxwell Law (for β = 1, 2, 3). The second equation corresponds to the two remaining equations, Gauss's law for magnetism (for β = 0) and Faraday's Law (for β = 1, 2, 3).