Search results
Results from the WOW.Com Content Network
Latent heat (also known as ... The large value of the enthalpy of condensation of water vapor is the reason that steam is a ... The following table shows the specific ...
The heat content of an ideal gas is independent of pressure (or volume), but the heat content of real gases varies with pressure, hence the need to define the state for the gas (real or ideal) and the pressure. Note that for some thermodynamic databases such as for steam, the reference temperature is 273.15 K (0 °C).
Data in the table above is given for water–steam equilibria at various temperatures over the entire temperature range at which liquid water can exist. Pressure of the equilibrium is given in the second column in kPa. The third column is the heat content of each gram of the liquid phase relative to water at 0 °C.
Enthalpies of melting and boiling for pure elements versus temperatures of transition, demonstrating Trouton's rule. In thermodynamics, the enthalpy of fusion of a substance, also known as (latent) heat of fusion, is the change in its enthalpy resulting from providing energy, typically heat, to a specific quantity of the substance to change its state from a solid to a liquid, at constant pressure.
J.A. Dean (ed.), Lange's Handbook of Chemistry (15th Edition), McGraw-Hill, 1999; Section 6, Thermodynamic Properties; Table 6.4, Heats of Fusion, Vaporization, and Sublimation and Specific Heat at Various Temperatures of the Elements and Inorganic Compounds
J.A. Dean (ed), Lange's Handbook of Chemistry (15th Edition), McGraw-Hill, 1999; Section 6, Thermodynamic Properties; Table 6.4, Heats of Fusion, Vaporization, and Sublimation and Specific Heat at Various Temperatures of the Elements and Inorganic Compounds
If wet steam is heated further, the droplets evaporate, and at a high enough temperature (which depends on the pressure) all of the water evaporates, the system is in vapor–liquid equilibrium, [7] and it becomes saturated steam. Saturated steam is advantageous in heat transfer due to the high latent heat of vaporization.
Table of specific heat capacities at 25 °C (298 K) unless otherwise noted. [citation needed] Notable minima and maxima are shown in maroon. Substance Phase Isobaric mass heat capacity c P J⋅g −1 ⋅K −1 Molar heat capacity, C P,m and C V,m J⋅mol −1 ⋅K −1 Isobaric volumetric heat capacity C P,v J⋅cm −3 ⋅K −1 Isochoric ...