Search results
Results from the WOW.Com Content Network
In statistics, the t distribution was first derived as a posterior distribution in 1876 by Helmert [19] [20] [21] and Lüroth. [22] [23] [24] As such, Student's t-distribution is an example of Stigler's Law of Eponymy. The t distribution also appeared in a more general form as Pearson type IV distribution in Karl Pearson's 1895 paper. [25]
One common method of construction of a multivariate t-distribution, for the case of dimensions, is based on the observation that if and are independent and distributed as (,) and (i.e. multivariate normal and chi-squared distributions) respectively, the matrix is a p × p matrix, and is a constant vector then the random variable = / / + has the density [1]
The multivariate t-distribution, a generalization of the Student's t-distribution. The negative multinomial distribution , a generalization of the negative binomial distribution . The Dirichlet negative multinomial distribution , a generalization of the beta negative binomial distribution .
To see how, consider that a theoretical probability distribution can be used as a generator of hypothetical observations. If an infinite number of observations are generated using a distribution, then the sample variance calculated from that infinite set will match the value calculated using the distribution's equation for variance.
If T is noncentral t-distributed with ν degrees of freedom and noncentrality parameter μ and =, then Z has a normal distribution with mean μ and unit variance. When the denominator noncentrality parameter of a doubly noncentral t -distribution is zero, then it becomes a noncentral t -distribution.
In statistics, the folded-t and half-t distributions are derived from Student's t-distribution by taking the absolute values of variates. This is analogous to the folded-normal and the half-normal statistical distributions being derived from the normal distribution .
In statistics, particularly in hypothesis testing, the Hotelling's T-squared distribution (T 2), proposed by Harold Hotelling, [1] is a multivariate probability distribution that is tightly related to the F-distribution and is most notable for arising as the distribution of a set of sample statistics that are natural generalizations of the statistics underlying the Student's t-distribution.
In statistics, the matrix t-distribution (or matrix variate t-distribution) is the generalization of the multivariate t-distribution from vectors to matrices. [1] [2]The matrix t-distribution shares the same relationship with the multivariate t-distribution that the matrix normal distribution shares with the multivariate normal distribution: If the matrix has only one row, or only one column ...