Search results
Results from the WOW.Com Content Network
In mathematics, the inverse function of a function f (also called the inverse of f) is a function that undoes the operation of f. The inverse of f exists if and only if f is bijective , and if it exists, is denoted by f − 1 . {\displaystyle f^{-1}.}
Inverse model of a reaching task. The arm's desired trajectory, Xref(t), is input into the model, which generates the necessary motor commands, ũ(t), to control the arm. Inverse models use the desired and actual position of the body as inputs to estimate the necessary motor commands which would transform the current position into the desired one.
The convex conjugate (specifically, the Legendre transform) of the softplus function is the negative binary entropy (with base e).This is because (following the definition of the Legendre transform: the derivatives are inverse functions) the derivative of softplus is the logistic function, whose inverse function is the logit, which is the derivative of negative binary entropy.
In particular, the function f has a differentiable inverse function in a neighborhood of a point x if and only if the Jacobian determinant is nonzero at x (see inverse function theorem for an explanation of this and Jacobian conjecture for a related problem of global invertibility).
An involution is a function f : X → X that, when applied twice, brings one back to the starting point. In mathematics, an involution, involutory function, or self-inverse function [1] is a function f that is its own inverse, f(f(x)) = x. for all x in the domain of f. [2] Equivalently, applying f twice produces the original value.
Since the function f(n) = A(n, n) considered above grows very rapidly, its inverse function, f −1, grows very slowly. This inverse Ackermann function f −1 is usually denoted by α. In fact, α(n) is less than 5 for any practical input size n, since A(4, 4) is on the order of .
AOL
Forward vs. inverse kinematics. In computer animation and robotics, inverse kinematics is the mathematical process of calculating the variable joint parameters needed to place the end of a kinematic chain, such as a robot manipulator or animation character's skeleton, in a given position and orientation relative to the start of the chain.