Search results
Results from the WOW.Com Content Network
In mathematics, a parabola is a plane curve which is mirror-symmetrical and is approximately U-shaped. It fits several superficially different mathematical descriptions, which can all be proved to define exactly the same curves. One description of a parabola involves a point (the focus) and a line (the directrix). The focus does not lie on the ...
Download as PDF; Printable version; ... This is a gallery of curves used in mathematics, by Wikipedia page. See also list of curves ... Parabola. Hyperbola. Degree 3
Download as PDF; Printable version ... This is a list of Wikipedia articles about curves used in different fields: mathematics (including geometry ... Cubic parabola ...
Quadratic function: Second degree polynomial, graph is a parabola. Cubic function: Third degree polynomial. Quartic function: Fourth degree polynomial. Quintic function: Fifth degree polynomial. Rational functions: A ratio of two polynomials. nth root. Square root: Yields a number whose square is the given one.
A category is an algebraic object that (abstractly) consists of a class of objects, and for every pair of objects, a set of morphisms. A partial (equiv. dependently typed ) binary operation called composition is provided on morphisms, every object has one special morphism from it to itself called the identity on that object, and composition and ...
In mathematics, the eccentricity of a conic section is a non-negative real number that uniquely characterizes its shape. One can think of the eccentricity as a measure of how much a conic section deviates from being circular. In particular: The eccentricity of a circle is 0. The eccentricity of an ellipse which is not a circle is between 0 and 1.
The universal parabolic constant is the red length divided by the green length. The universal parabolic constant is a mathematical constant.. It is defined as the ratio, for any parabola, of the arc length of the parabolic segment formed by the latus rectum to the focal parameter.
A parabolic segment is the region bounded by a parabola and line. To find the area of a parabolic segment, Archimedes considers a certain inscribed triangle. The base of this triangle is the given chord of the parabola, and the third vertex is the point on the parabola such that the tangent to the parabola at that point is parallel to the chord.