Search results
Results from the WOW.Com Content Network
A Euclidean plane with a chosen Cartesian coordinate system is called a Cartesian plane. In a Cartesian plane, one can define canonical representatives of certain geometric figures, such as the unit circle (with radius equal to the length unit, and center at the origin), the unit square (whose diagonal has endpoints at (0, 0) and (1, 1) ), the ...
A Euclidean plane with a chosen Cartesian coordinate system is called a Cartesian plane. The set of the ordered pairs of real numbers (the real coordinate plane), equipped with the dot product, is often called the Euclidean plane or standard Euclidean plane, since every Euclidean plane is isomorphic to it.
A point in the plane may be represented in homogeneous coordinates by a triple (x, y, z) where x/z and y/z are the Cartesian coordinates of the point. [10] This introduces an "extra" coordinate since only two are needed to specify a point on the plane, but this system is useful in that it represents any point on the projective plane without the ...
Illustration of a Cartesian coordinate plane. Four points are marked and labeled with their coordinates: (2,3) in green, (−3,1) in red, (−1.5,−2.5) in blue, and the origin (0,0) in purple. In analytic geometry, the plane is given a coordinate system, by which every point has a pair of real number coordinates.
A Euclidean plane with a chosen Cartesian coordinate system is called a Cartesian plane. The set of the ordered pairs of real numbers (the real coordinate plane), equipped with the dot product, is often called the Euclidean plane or standard Euclidean plane, since every Euclidean plane is isomorphic to it.
The four quadrants of a Cartesian coordinate system. The axes of a two-dimensional Cartesian system divide the plane into four infinite regions, called quadrants, each bounded by two half-axes. The axes themselves are, in general, not part of the respective quadrants.
A point P has coordinates (x, y) with respect to the original system and coordinates (x′, y′) with respect to the new system. [1] In the new coordinate system, the point P will appear to have been rotated in the opposite direction, that is, clockwise through the angle . A rotation of axes in more than two dimensions is defined similarly.
Let (x, y, z) be the standard Cartesian coordinates, and (ρ, θ, φ) the spherical coordinates, with θ the angle measured away from the +Z axis (as , see conventions in spherical coordinates). As φ has a range of 360° the same considerations as in polar (2 dimensional) coordinates apply whenever an arctangent of it is taken. θ has a range ...