Search results
Results from the WOW.Com Content Network
Albedo (/ æ l ˈ b iː d oʊ / al-BEE-doh; from Latin albedo 'whiteness') is the fraction of sunlight that is diffusely reflected by a body. It is measured on a scale from 0 (corresponding to a black body that absorbs all incident radiation) to 1 (corresponding to a body that reflects all incident radiation).
In astronomy, the geometric albedo of a celestial body is the ratio of its actual brightness as seen from the light source (i.e. at zero phase angle) to that of an idealized flat, fully reflecting, diffusively scattering disk with the same cross-section.
The Bond albedo is a value strictly between 0 and 1, as it includes all possible scattered light (but not radiation from the body itself). This is in contrast to other definitions of albedo such as the geometric albedo, which can be above 1. In general, though, the Bond albedo may be greater or smaller than the geometric albedo, depending on ...
The planet has an albedo that depends on the characteristics of its surface and atmosphere, and therefore only absorbs a fraction of radiation. The planet absorbs the radiation that isn't reflected by the albedo, and heats up. One may assume that the planet radiates energy like a blackbody at some temperature according to the Stefan–Boltzmann ...
Earth has an albedo of about 0.306 and a solar irradiance (L / 4 π D 2) of 1361 W m −2 at its mean orbital radius of 1.5×10 8 km. The calculation with ε=1 and remaining physical constants then gives an Earth effective temperature of 254 K (−19 °C). [11] The actual temperature of Earth's surface is an average 288 K (15 °C) as of 2020. [12]
Under Woodham's original assumptions — Lambertian reflectance, known point-like distant light sources, and uniform albedo — the problem can be solved by inverting the linear equation =, where is a (known) vector of observed intensities, is the (unknown) surface normal, and is a (known) matrix of normalized light directions.
The calculation requires the Bond albedo (the proportion of total incoming power reflected, taking into account all directions), while the IRAS and MSX albedo data that is available for asteroids gives only the geometric albedo which characterises only the strength of light reflected back to the source (the Sun).
At last quarter, the Moon is about 0.06 mag fainter than at first quarter, because that part of its surface has a lower albedo. Earth's albedo varies by a factor of 6, from 0.12 in the cloud-free case to 0.76 in the case of altostratus cloud. The absolute magnitude in the table corresponds to an albedo of 0.434.