Search results
Results from the WOW.Com Content Network
In the fall of 2018, fast.ai released v1.0 of their free open-source library for deep learning called fastai (without a period), sitting atop PyTorch. Google Cloud was the first to announce its support. [6] This open-source framework is hosted on GitHub and is licensed under the Apache License, Version 2.0. [7] [8]
Horovod is a free and open-source software framework for distributed deep learning training using TensorFlow, Keras, PyTorch, and Apache MXNet. Horovod is hosted under the Linux Foundation AI (LF AI). [3] Horovod has the goal of improving the speed, scale, and resource allocation when training a machine learning model. [4]
A number of pieces of deep learning software are built on top of PyTorch, including Tesla Autopilot, [15] Uber's Pyro, [16] Hugging Face's Transformers, [17] PyTorch Lightning, [18] [19] and Catalyst. [20] [21] PyTorch provides two high-level features: [22] Tensor computing (like NumPy) with strong acceleration via graphics processing units (GPU)
For many years, sequence modelling and generation was done by using plain recurrent neural networks (RNNs). A well-cited early example was the Elman network (1990). In theory, the information from one token can propagate arbitrarily far down the sequence, but in practice the vanishing-gradient problem leaves the model's state at the end of a long sentence without precise, extractable ...
[3] [4] It is one of the most popular deep learning frameworks, alongside others such as PyTorch and PaddlePaddle. [ 5 ] [ 6 ] It is free and open-source software released under the Apache License 2.0 .
Torch is an open-source machine learning library, a scientific computing framework, and a scripting language based on Lua. [3] It provides LuaJIT interfaces to deep learning algorithms implemented in C. It was created by the Idiap Research Institute at EPFL. Torch development moved in 2017 to PyTorch, a port of the library to Python. [4] [5] [6]
Chainer was the first deep learning framework to introduce the define-by-run approach. [10] [11] The traditional procedure to train a network was in two phases: define the fixed connections between mathematical operations (such as matrix multiplication and nonlinear activations) in the network, and then run the actual training calculation. This ...
As of 2018, SqueezeNet ships "natively" as part of the source code of a number of deep learning frameworks such as PyTorch, Apache MXNet, and Apple CoreML. [ 10 ] [ 11 ] [ 12 ] In addition, third party developers have created implementations of SqueezeNet that are compatible with frameworks such as TensorFlow . [ 13 ]