Search results
Results from the WOW.Com Content Network
Huygens' maintaining power in use. The weight drive used by Christiaan Huygens in his early clocks acts as a maintaining power. In this layout, the weight which drives the clock is carried on a pulley and the cord (or chain) supporting the weight is wrapped around the main driving wheel on one side and the rewinding wheel on the other.
It is usually a planetary gear mechanism (epicyclic gearing) in the base of the fusee "cone" which then provides turning power in the opposite direction to the 'winding up' direction therefore keeping the watch or clock running during winding. Most fusee clocks and watches include a 'winding stop' mechanism to prevent the mainspring and fusee ...
In striking clocks, the striking train is a gear train that moves a hammer to strike the hours on a gong. It is usually driven by a separate but identical power source to the going train. In antique clocks, to save costs, it was often identical to the going train, and mounted parallel to it on the left side when facing the front of the clock. [11]
The number is in units of 30 degrees. For example, a transformer with a vector group of Dy1 has a delta-connected HV winding and a wye-connected LV winding. The phase angle of the LV winding lags the HV by 30 degrees. Note that the high-voltage (HV) side always comes before the low-voltage (LV) side, regardless of which is the primary winding.
Currently, the clock is operated using a weight cable system with weights weighing 800 pounds and housed in a chute that runs through the courthouse. Historic courthouse clock to get new winding ...
A typical one-line diagram with annotated power flows. Red boxes represent circuit breakers, grey lines represent three-phase bus and interconnecting conductors, the orange circle represents an electric generator, the green spiral is an inductor, and the three overlapping blue circles represent a double-wound transformer with a tertiary winding.
After winding, the arbor is stationary and the pull of the mainspring turns the barrel, which has a ring of gear teeth around it. This meshes with one of the clock's gears, usually the center wheel pinion and drives the wheel train. The barrel usually rotates once every 8 hours, so the common 40-hour spring requires 5 turns to unwind completely.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!