Search results
Results from the WOW.Com Content Network
In chemistry, a formula unit is the smallest unit of a non-molecular substance, such as an ionic compound, covalent network solid, or metal. [1] [2] It can also refer to the chemical formula for that unit. Those structures do not consist of discrete molecules, and so for them, the term formula unit is used.
The ionic strength of a solution is a measure of the concentration of ions in that solution. Ionic compounds , when dissolved in water, dissociate into ions. The total electrolyte concentration in solution will affect important properties such as the dissociation constant or the solubility of different salts .
For most ionic compounds dissolved in water, the van 't Hoff factor is equal to the number of discrete ions in a formula unit of the substance. This is true for ideal solutions only, as occasionally ion pairing occurs in solution. At a given instant a small percentage of the ions are paired and count as a single particle.
A chemical formula used for a series of compounds that differ from each other by a constant unit is called a general formula. It generates a homologous series of chemical formulae. For example, alcohols may be represented by the formula C n H 2n + 1 OH (n ≥ 1), giving the homologs methanol, ethanol, propanol for 1 ≤ n ≤ 3.
In chemistry, a salt or ionic compound is a chemical compound consisting of an assembly of positively charged ions and negatively charged ions , [1] which results in a compound with no net electric charge (electrically neutral). The constituent ions are held together by electrostatic forces termed ionic bonds.
Barium hydroxide is a chemical compound with the chemical formula Ba(OH) 2. The monohydrate ( x = 1), known as baryta or baryta-water, is one of the principal compounds of barium . This white granular monohydrate is the usual commercial form.
For ionic compounds made of molecular cations and/or anions, there may also be ion-dipole and dipole-dipole interactions if either molecule has a molecular dipole moment. The theoretical treatments described below are focused on compounds made of atomic cations and anions, and neglect contributions to the internal energy of the lattice from ...
This extends the scope of the ionic model well beyond compounds in which the bonding would normally be considered as "ionic". For example, methane, CH 4, obeys the conditions for the ionic model with carbon as the cation and hydrogen as the anion (or vice versa, since carbon and hydrogen have the same electronegativity).