Search results
Results from the WOW.Com Content Network
In mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called vectors, can be added together and multiplied ("scaled") by numbers called scalars. The operations of vector addition and scalar multiplication must satisfy certain requirements, called vector axioms .
A scalar in physics and other areas of science is also a scalar in mathematics, as an element of a mathematical field used to define a vector space.For example, the magnitude (or length) of an electric field vector is calculated as the square root of its absolute square (the inner product of the electric field with itself); so, the inner product's result is an element of the mathematical field ...
The term vector was coined by W. R. Hamilton around 1843, as he revealed quaternions, a system which uses vectors and scalars to span a four-dimensional space. For a quaternion q = a + b i + c j + d k, Hamilton used two projections: S q = a , for the scalar part of q , and V q = b i + c j + d k, the vector part.
A scalar is an element of a field which is used to define a vector space.In linear algebra, real numbers or generally elements of a field are called scalars and relate to vectors in an associated vector space through the operation of scalar multiplication (defined in the vector space), in which a vector can be multiplied by a scalar in the defined way to produce another vector.
Founded upon the lectures of J. Willard Gibbs, Ph.D., LL.D." The first chapter covers vectors in three spatial dimensions, the concept of a (real) scalar, and the product of a scalar with a vector. The second chapter introduces the dot and cross products for pairs of vectors. These are extended to a scalar triple product and a
The scalars and vectors have their usual interpretation and make up distinct subspaces of a geometric algebra. Bivectors provide a more natural representation of the pseudovector quantities of 3D vector calculus that are derived as a cross product, such as oriented area, oriented angle of rotation, torque, angular momentum and the magnetic field.
In this article, vectors are represented in boldface to distinguish them from scalars. [nb 1] [1] A vector space over a field F is a non-empty set V together with a binary operation and a binary function that satisfy the eight axioms listed below. In this context, the elements of V are commonly called vectors, and the elements of F are called ...
The following are important identities in vector algebra.Identities that only involve the magnitude of a vector ‖ ‖ and the dot product (scalar product) of two vectors A·B, apply to vectors in any dimension, while identities that use the cross product (vector product) A×B only apply in three dimensions, since the cross product is only defined there.