Search results
Results from the WOW.Com Content Network
Magnetic nanobeads or nanoparticle clusters composed of FDA-approved oxide superparamagnetic nanoparticles (e.g. maghemite, magnetite) hold much potential for waste water treatment since they express excellent biocompatibility which concerning the environmental impacts of the material is an advantage compared to metallic nanoparticles.
One use is in water purification: in high gradient magnetic separation, magnetite nanoparticles introduced into contaminated water will bind to the suspended particles (solids, bacteria, or plankton, for example) and settle to the bottom of the fluid, allowing the contaminants to be removed and the magnetite particles to be recycled and reused ...
The translation of the magnetic force exerted on the tumor and its microenvironment by magnetic nanoparticles into biochemical signaling pathways is known as the magneto-mechanochemical effect. This leads to the formation of regions with different biomechanical and biochemical properties within the tumor.
A 2013 study considered the effect of an external magnetic field on the convective heat transfer coefficient of water-based magnetite nanofluid experimentally under laminar flow regime. It obtained up to 300% enhancement at Re=745 and magnetic field gradient of 32.5 mT/mm. The effect of the magnetic field on pressure was not as significant. [42]
The magnetic attraction of tiny nanoparticles is weak enough that the surfactant's Van der Waals force is sufficient to prevent magnetic clumping or agglomeration. Ferrofluids usually do not retain magnetization in the absence of an externally applied field and thus are often classified as " superparamagnets " rather than ferromagnets.
The liquid–liquid interface method is best exemplified by Gu et al., who made an emulsion from water and an oil and added nanoparticles of magnetite. The magnetite nanoparticles aggregated at the interface of the water-oil mixture, forming a Pickering emulsion. Then, silver nitrate was added to the mixture, resulting in the deposition of ...
The other approach would potentially use minuscule nanoparticles that would travel through the body and find dying heart tissue. The nanoparticles would be carrying objects such as "stem cells, growth factors, drugs and other therapeutic compounds,". [2] Then the nanoparticles would release the compounds and inject them into the damaged heart ...
It is primarily concerned with the low-frequency, large-scale, magnetic behavior in plasmas and liquid metals and has applications in multiple fields including space physics, geophysics, astrophysics, and engineering. The word magnetohydrodynamics is derived from magneto-meaning magnetic field, hydro-meaning water, and dynamics meaning ...