enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fourier transform - Wikipedia

    en.wikipedia.org/wiki/Fourier_transform

    The Fourier transform of a periodic function cannot be defined using the integral formula directly. In order for integral in Eq.1 to be defined the function must be absolutely integrable. Instead it is common to use Fourier series. It is possible to extend the definition to include periodic functions by viewing them as tempered distributions.

  3. Discrete-time Fourier transform - Wikipedia

    en.wikipedia.org/.../Discrete-time_Fourier_transform

    The lower right corner depicts samples of the DTFT that are computed by a discrete Fourier transform (DFT). The utility of the DTFT is rooted in the Poisson summation formula, which tells us that the periodic function represented by the Fourier series is a periodic summation of the continuous Fourier transform: [b]

  4. Discrete Fourier transform - Wikipedia

    en.wikipedia.org/wiki/Discrete_Fourier_transform

    While the ordinary DFT corresponds to a periodic signal in both time and frequency domains, = / produces a signal that is anti-periodic in frequency domain (+ =) and vice versa for = /. Thus, the specific case of a = b = 1 / 2 {\displaystyle a=b=1/2} is known as an odd-time odd-frequency discrete Fourier transform (or O 2 DFT).

  5. Fourier analysis - Wikipedia

    en.wikipedia.org/wiki/Fourier_analysis

    For periodic functions, both the Fourier transform and the DTFT comprise only a discrete set of frequency components (Fourier series), and the transforms diverge at those frequencies. One common practice (not discussed above) is to handle that divergence via Dirac delta and Dirac comb functions.

  6. Frequency domain - Wikipedia

    en.wikipedia.org/wiki/Frequency_domain

    The discrete-time Fourier transform, on the other hand, maps functions with discrete time (discrete-time signals) to functions that have a continuous frequency domain. [ 2 ] [ 3 ] A periodic signal has energy only at a base frequency and its harmonics; thus it can be analyzed using a discrete frequency domain.

  7. Convolution theorem - Wikipedia

    en.wikipedia.org/wiki/Convolution_theorem

    In mathematics, the convolution theorem states that under suitable conditions the Fourier transform of a convolution of two functions (or signals) is the product of their Fourier transforms. More generally, convolution in one domain (e.g., time domain ) equals point-wise multiplication in the other domain (e.g., frequency domain ).

  8. Rectangular function - Wikipedia

    en.wikipedia.org/wiki/Rectangular_function

    For ⁡ (/), its Fourier transform is ⁡ = ⁡ = ⁡ (). Note that as long as the definition of the pulse function is only motivated by its behavior in the time-domain experience, there is no reason to believe that the oscillatory interpretation (i.e. the Fourier transform function) should be intuitive, or directly understood by humans.

  9. List of Fourier-related transforms - Wikipedia

    en.wikipedia.org/wiki/List_of_Fourier-related...

    Fourier transform, with special cases: Fourier series. When the input function/waveform is periodic, the Fourier transform output is a Dirac comb function, modulated by a discrete sequence of finite-valued coefficients that are complex-valued in general. These are called Fourier series coefficients. The term Fourier series actually refers to ...