Search results
Results from the WOW.Com Content Network
The concentration at saturation depends on the partial pressure of the gas in the supply and of the solubility of the gas in that solvent, under those conditions. If the external partial pressure of the gas (in the lungs) is then reduced, more gas will diffuse out than in. A condition known as supersaturation may develop.
When both temperature and pressure are held constant, and the number of particles is expressed in moles, the chemical potential is the partial molar Gibbs free energy. [ 1 ] [ 2 ] At chemical equilibrium or in phase equilibrium , the total sum of the product of chemical potentials and stoichiometric coefficients is zero, as the free energy is ...
For the gas phase, molar concentration and partial pressure are often used. It is not possible to use the gas-phase mixing ratio ( y {\displaystyle y} ) because at a given gas-phase mixing ratio, the aqueous-phase concentration c a {\displaystyle c_{\rm {a}}} depends on the total pressure and thus the ratio y / c a {\displaystyle y/c_{\rm {a ...
is the partial pressure of oxygen in the systemic veins (where it can actually be measured). Thus, the higher the diffusing capacity , the more gas will be transferred into the lung per unit time for a given gradient in partial pressure (or concentration) of the gas. Since it can be possible to know the alveolar oxygen concentration and the ...
If the pressure is increased by the addition of an inert gas, then neither the composition at equilibrium nor the equilibrium constant are appreciably affected (because the partial pressures remain constant, assuming an ideal-gas behaviour of all gases involved). However, the composition at equilibrium will depend appreciably on pressure when:
The relative activity of a species i, denoted a i, is defined [4] [5] as: = where μ i is the (molar) chemical potential of the species i under the conditions of interest, μ o i is the (molar) chemical potential of that species under some defined set of standard conditions, R is the gas constant, T is the thermodynamic temperature and e is the exponential constant.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
where P is the pressure of the gas, V is the volume of the gas, and k is a constant for a particular temperature and amount of gas. Boyle's law states that when the temperature of a given mass of confined gas is constant, the product of its pressure and volume is also constant. When comparing the same substance under two different sets of ...