Search results
Results from the WOW.Com Content Network
The heating value depends on the source of gas that is used and the process that is used to liquefy the gas. The range of heating value can span ±10 to 15 percent. A typical value of the higher heating value of LNG is approximately 50 MJ/kg or 21,500 BTU/lb. [2] A typical value of the lower heating value of LNG is 45 MJ/kg or 19,350 BTU/lb.
A log-lin vapor pressure chart for various liquids. The higher the vapor pressure of a liquid at a given temperature, the lower the normal boiling point (i.e., the boiling point at atmospheric pressure) of the liquid. The vapor pressure chart to the right has graphs of the vapor pressures versus temperatures for a variety of liquids. [10]
If a sufficient amount of liquid is vaporized within a closed container, it produces pressures that can rupture the pressure vessel. Hence the use of pressure relief valves and vent valves are important. [2] The expansion ratio of liquefied and cryogenic from the boiling point to ambient is: nitrogen – 1 to 696; liquid helium – 1 to 745 ...
At ambient pressure the boiling point of liquefied helium is 4.22 K (−268.93 °C). Below 2.17 K liquid 4 He becomes a superfluid (Nobel Prize 1978, Pyotr Kapitsa) and shows characteristic properties such as heat conduction through second sound, zero viscosity and the fountain effect among others.
Values are given in terms of temperature necessary to reach the specified pressure. Valid results within the quoted ranges from most equations are included in the table for comparison. A conversion factor is included into the original first coefficients of the equations to provide the pressure in pascals (CR2: 5.006, SMI: -0.875).
This Wikipedia page provides a comprehensive list of boiling and freezing points for various solvents.
Boiling-point diagram. The preceding equilibrium equations are typically applied for each phase (liquid or vapor) individually, but the result can be plotted in a single diagram. In a binary boiling-point diagram, temperature (T ) (or sometimes pressure) is graphed vs. x 1. At any given temperature (or pressure) where both phases are present ...
(760 mmHg = 101.325 kPa = 1.000 atm = normal pressure) This example shows a severe problem caused by using two different sets of coefficients. The described vapor pressure is not continuous—at the normal boiling point the two sets give different results. This causes severe problems for computational techniques which rely on a continuous vapor ...