Search results
Results from the WOW.Com Content Network
Ordered pairs of scalars are sometimes called 2-dimensional vectors. (Technically, this is an abuse of terminology since an ordered pair need not be an element of a vector space.) The entries of an ordered pair can be other ordered pairs, enabling the recursive definition of ordered n-tuples (ordered lists of n objects).
The axiom of pairing also allows for the definition of ordered pairs. For any objects and , the ordered pair is defined by the following: (,) = {{}, {,}}. Note that this definition satisfies the condition
Intuitively, an ordered pair is simply a collection of two objects such that one can be distinguished as the first element and the other as the second element, and having the fundamental property that, two ordered pairs are equal if and only if their first elements are equal and their second elements are equal.
Lattices, partial orders in which each pair of elements has a greatest lower bound and a least upper bound. Many different types of lattice have been studied; see map of lattices for a list. Partially ordered sets (or posets), orderings in which some pairs are comparable and others might not be
In mathematics, a relation denotes some kind of relationship between two objects in a set, which may or may not hold. [1] As an example, " is less than " is a relation on the set of natural numbers ; it holds, for instance, between the values 1 and 3 (denoted as 1 < 3 ), and likewise between 3 and 4 (denoted as 3 < 4 ), but not between the ...
A partially ordered set (poset for short) is an ordered pair = (,) consisting of a set (called the ground set of ) and a partial order on . When the meaning is clear from context and there is no ambiguity about the partial order, the set X {\displaystyle X} itself is sometimes called a poset.
Formally, a group is an ordered pair of a set and a binary operation on this set that satisfies the group axioms. The set is called the underlying set of the group, and the operation is called the group operation or the group law. A group and its underlying set are thus two different mathematical objects.
"In mathematics, an ordered pair is a collection of objects having two coordinates (entries, projections), such that one can always uniquely determine the object, which is the first coordinate (first entry, left projection) of the pair as well as the second coordinate (second entry, right projection).