Search results
Results from the WOW.Com Content Network
This page was last edited on 16 November 2024, at 12:16 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.
The processing of titanium metal occurs in four major steps: reduction of titanium ore into "sponge", a porous form; melting of sponge, or sponge plus a master alloy to form an ingot; primary fabrication, where an ingot is converted into general mill products such as billet, bar, plate, sheet, strip, and tube; and secondary fabrication of ...
Titanium alone is a strong, light metal. It is stronger than common, low-carbon steels, but 45% lighter. It is also twice as strong as weak aluminium alloys but only 60% heavier. Titanium has outstanding corrosion resistance to seawater, and thus is used in propeller shafts, rigging and other parts of boats that are exposed to seawater.
Most metal borides are hard; [41] however, a few stand out among them for their particularly high hardnesses (for example, WB 4, [42] [43] RuB 2, OsB 2 and ReB 2). These metal borides are still metals and not semiconductors or insulators (as indicated by their high electronic density of states at the Fermi Level ); however, the additional ...
However, these are all based on empirical correlations, often specific to particular types of alloy: even with such a limitation, the values obtained are often quite unreliable. The underlying problem is that metals with a range of combinations of yield stress and work hardening characteristics can exhibit the same hardness number. The use of ...
These steels can contain 26% to 42% chromium as well as 10% to 22% nickel and 1.5 to 10% of titanium, tantalum, vanadium, niobium, aluminum silicon, copper, or molybdenum, etc., or some combination thereof. [citation needed] H1, produced by Myodo Metals, Japan. Used by Spyderco in their salt water/diving knives.
Refractory metals have high melting points, with tungsten and rhenium the highest of all elements, and the other's melting points only exceeded by osmium and iridium, and the sublimation of carbon. These high melting points define most of their applications. All the metals are body-centered cubic except rhenium which is hexagonal close-packed.
Group 4 is the second group of transition metals in the periodic table. It contains the four elements titanium (Ti), zirconium (Zr), hafnium (Hf), and rutherfordium (Rf). The group is also called the titanium group or titanium family after its lightest member.