Search results
Results from the WOW.Com Content Network
If, as the one variable increases, the other decreases, the rank correlation coefficients will be negative. It is common to regard these rank correlation coefficients as alternatives to Pearson's coefficient, used either to reduce the amount of calculation or to make the coefficient less sensitive to non-normality in distributions.
The correlation coefficient is negative (anti-correlation) if X i and Y i tend to lie on opposite sides of their respective means. Moreover, the stronger either tendency is, the larger is the absolute value of the correlation coefficient. Rodgers and Nicewander [17] cataloged thirteen ways of interpreting correlation or simple functions of it:
A correlation coefficient is a numerical measure of some type of linear correlation, meaning a statistical relationship between two variables. [ a ] The variables may be two columns of a given data set of observations, often called a sample , or two components of a multivariate random variable with a known distribution .
Values range from −1 (100% negative association, or perfect inversion) to +1 (100% positive association, or perfect agreement). A value of zero indicates the absence of association. This statistic (which is distinct from Goodman and Kruskal's lambda ) is named after Leo Goodman and William Kruskal , who proposed it in a series of papers from ...
More generally, the correlation between two variables is 1 (or –1) if one of them always takes on a value that is given exactly by a linear function of the other with respectively a positive (or negative) slope. Although the values of the theoretical covariances and correlations are linked in the above way, the probability distributions of ...
Like the correlation coefficient, the partial correlation coefficient takes on a value in the range from –1 to 1. The value –1 conveys a perfect negative correlation controlling for some variables (that is, an exact linear relationship in which higher values of one variable are associated with lower values of the other); the value 1 conveys ...
Values of Tau-b range from −1 (100% negative association, or perfect disagreement) to +1 (100% positive association, or perfect agreement). In case of the absence of association, Tau-b is equal to zero. The Kendall Tau-b coefficient is defined as :
The coefficient of multiple correlation is known as the square root of the coefficient of determination, but under the particular assumptions that an intercept is included and that the best possible linear predictors are used, whereas the coefficient of determination is defined for more general cases, including those of nonlinear prediction and those in which the predicted values have not been ...