Search results
Results from the WOW.Com Content Network
Materials for shielding gamma rays are typically measured by the thickness required to reduce the intensity of the gamma rays by one half (the half-value layer or HVL). For example, gamma rays that require 1 cm (0.4 inch) of lead to reduce their intensity by 50% will also have their intensity reduced in half by 4.1 cm of granite rock, 6 cm (2.5 ...
The ratio of primary cosmic ray hadrons to gamma rays also gives a clue as to the origin of cosmic rays. Although gamma rays could be produced near the source of cosmic rays, they could also be produced by interaction with cosmic microwave background by way of the Greisen–Zatsepin–Kuzmin limit cutoff above 50 EeV. [4] Ultra-high-energy ...
Gamma rays, at the high-frequency end of the spectrum, have the highest photon energies and the shortest wavelengths—much smaller than an atomic nucleus. Gamma rays, X-rays, and extreme ultraviolet rays are called ionizing radiation because their high photon energy is able to ionize atoms, causing chemical reactions. Longer-wavelength ...
Very-high-energy gamma ray (VHEGR) denotes gamma radiation with photon energies of 100 GeV (gigaelectronvolt) to 100 TeV (teraelectronvolt), i.e., 10 11 to 10 14 electronvolts. [1] This is approximately equal to wavelengths between 10 −17 and 10 −20 meters, or frequencies of 2 × 10 25 to 2 × 10 28 Hz.
No gamma-ray bursts from within our own galaxy, the Milky Way, have been observed, [161] and the question of whether one has ever occurred remains unresolved. In light of evolving understanding of gamma-ray bursts and their progenitors, the scientific literature records a growing number of local, past, and future GRB candidates.
Such interactions generate an afterglow in X-ray frequencies, usually seen as concentric rings of scattered X-rays with the gamma ray burst at the center. GRB 221009A is only the seventh gamma-ray burst known to have generated these rings, [ 10 ] and as of March 2023, a record twenty X-ray afterglow rings had been identified around the burst ...
Significant gamma-ray emission from our galaxy was first detected in 1967 [9] by the detector aboard the OSO 3 satellite. It detected 621 events attributable to cosmic gamma rays. However, the field of gamma-ray astronomy took great leaps forward with the SAS-2 (1972) and the Cos-B (1975–1982) satellites. These two satellites provided an ...
Electromagnetic – X-rays: 10 17: 100 PHz: 10 18: 1 exahertz (EHz) 10 19: 10 EHz: 10 20: 100 EHz: 300 EHz + Electromagnetic – gamma rays: 10 21: 1 zettahertz (ZHz) 36 ZHz: Resonance width of the rho meson: 10 24: 1 yottahertz (YHz) 10 27: 1 ronnahertz (RHz) 3.9 RHz: Highest energy (16 TeV) gamma ray detected, from Markarian 501: 10 30: 1 ...