enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Linear function (calculus) - Wikipedia

    en.wikipedia.org/wiki/Linear_function_(calculus)

    A linear function () = + has a constant rate of change equal to its slope a, so its derivative is the constant function ′ =. The fundamental idea of differential calculus is that any smooth function f ( x ) {\displaystyle f(x)} (not necessarily linear) can be closely approximated near a given point x = c {\displaystyle x=c} by a unique linear ...

  3. Strain-rate tensor - Wikipedia

    en.wikipedia.org/wiki/Strain-rate_tensor

    A two-dimensional flow that, at the highlighted point, has only a strain rate component, with no mean velocity or rotational component. In continuum mechanics, the strain-rate tensor or rate-of-strain tensor is a physical quantity that describes the rate of change of the strain (i.e., the relative deformation) of a material in the neighborhood of a certain point, at a certain moment of time.

  4. Rate of change - Wikipedia

    en.wikipedia.org/wiki/Rate_of_change

    Download as PDF; Printable version; In other projects Wikidata item; Appearance. move to sidebar hide. Rate of change may refer to: Rate of change (mathematics) ...

  5. Rate (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Rate_(mathematics)

    In mathematics, a rate is the quotient of two quantities, often represented as a fraction. [1] If the divisor (or fraction denominator) in the rate is equal to one expressed as a single unit, and if it is assumed that this quantity can be changed systematically (i.e., is an independent variable), then the dividend (the fraction numerator) of the rate expresses the corresponding rate of change ...

  6. Fourth, fifth, and sixth derivatives of position - Wikipedia

    en.wikipedia.org/wiki/Fourth,_fifth,_and_sixth...

    Snap, [6] or jounce, [2] is the fourth derivative of the position vector with respect to time, or the rate of change of the jerk with respect to time. [4] Equivalently, it is the second derivative of acceleration or the third derivative of velocity, and is defined by any of the following equivalent expressions: = ȷ = = =.

  7. Differential calculus - Wikipedia

    en.wikipedia.org/wiki/Differential_calculus

    In mathematics, differential calculus is a subfield of calculus that studies the rates at which quantities change. [1] It is one of the two traditional divisions of calculus, the other being integral calculus—the study of the area beneath a curve.

  8. Curvature - Wikipedia

    en.wikipedia.org/wiki/Curvature

    Note that changing F into –F would not change the curve defined by F(x, y) = 0, but it would change the sign of the numerator if the absolute value were omitted in the preceding formula. A point of the curve where F x = F y = 0 is a singular point , which means that the curve is not differentiable at this point, and thus that the curvature is ...

  9. Gradient - Wikipedia

    en.wikipedia.org/wiki/Gradient

    The gradient can also be used to measure how a scalar field changes in other directions, rather than just the direction of greatest change, by taking a dot product. Suppose that the steepest slope on a hill is 40%. A road going directly uphill has slope 40%, but a road going around the hill at an angle will have a shallower slope.