enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Chemical bonding of water - Wikipedia

    en.wikipedia.org/wiki/Chemical_bonding_of_water

    In other words, if water was formed from two identical O-H bonds and two identical sp 3 lone pairs on the oxygen atom as predicted by valence bond theory, then its photoelectron spectrum (PES) would have two (degenerate) peaks and energy, one for the two O-H bonds and the other for the two sp 3 lone pairs.

  3. Bond-dissociation energy - Wikipedia

    en.wikipedia.org/wiki/Bond-dissociation_energy

    The term bond-dissociation energy is similar to the related notion of bond-dissociation enthalpy (or bond enthalpy), which is sometimes used interchangeably.However, some authors make the distinction that the bond-dissociation energy (D 0) refers to the enthalpy change at 0 K, while the term bond-dissociation enthalpy is used for the enthalpy change at 298 K (unambiguously denoted DH° 298).

  4. Bond energy - Wikipedia

    en.wikipedia.org/wiki/Bond_energy

    The bond dissociation energy (enthalpy) [4] is also referred to as bond disruption energy, bond energy, bond strength, or binding energy (abbreviation: BDE, BE, or D). It is defined as the standard enthalpy change of the following fission: R—X → R + X. The BDE, denoted by Dº(R—X), is usually derived by the thermochemical equation,

  5. Water dimer - Wikipedia

    en.wikipedia.org/wiki/Water_dimer

    The first theoretical study of the water dimer was an ab initio calculation published in 1968 by Morokuma and Pedersen. [10] Since then, the water dimer has been the focus of sustained interest by theoretical chemists concerned with hydrogen bonding—a search of the CAS database up to 2006 returns over 1100 related references (73 of them in 2005).

  6. VSEPR theory - Wikipedia

    en.wikipedia.org/wiki/VSEPR_theory

    The bond angle for water is 104.5°. Valence shell electron pair repulsion ( VSEPR ) theory ( / ˈ v ɛ s p ər , v ə ˈ s ɛ p ər / VESP -ər , [ 1 ] : 410 və- SEP -ər [ 2 ] ) is a model used in chemistry to predict the geometry of individual molecules from the number of electron pairs surrounding their central atoms. [ 3 ]

  7. Molecular orbital theory - Wikipedia

    en.wikipedia.org/wiki/Molecular_orbital_theory

    Bond order is the number of chemical bonds between a pair of atoms. The bond order of a molecule can be calculated by subtracting the number of electrons in anti-bonding orbitals from the number of bonding orbitals, and the resulting number is then divided by two. A molecule is expected to be stable if it has bond order larger than zero.

  8. Heterogeneous water oxidation - Wikipedia

    en.wikipedia.org/wiki/Heterogeneous_Water_Oxidation

    Of the two half reactions, the oxidation step is the most demanding because it requires the coupling of 4 electron and proton transfers and the formation of an oxygen-oxygen bond. This process occurs naturally in plants photosystem II to provide protons and electrons for the photosynthesis process and release oxygen to the atmosphere, [ 1 ] as ...

  9. Bent's rule - Wikipedia

    en.wikipedia.org/wiki/Bent's_rule

    [4] [5] Bent's rule can be justified through the relative energy levels of s and p orbitals. Bent's rule represents a modification of VSEPR theory for molecules of lower than ideal symmetry. [6] For bonds with the larger atoms from the lower periods, trends in orbital hybridization depend strongly on both electronegativity and orbital size.