Search results
Results from the WOW.Com Content Network
Acetic acid, CH 3 COOH, is an acid because it donates a proton to water (H 2 O) and becomes its conjugate base, the acetate ion (CH 3 COO −). H 2 O is a base because it accepts a proton from CH 3 COOH and becomes its conjugate acid, the hydronium ion, ( H 3 O + ).
In chemistry, an acid–base reaction is a chemical reaction that occurs between an acid and a base.It can be used to determine pH via titration.Several theoretical frameworks provide alternative conceptions of the reaction mechanisms and their application in solving related problems; these are called the acid–base theories, for example, Brønsted–Lowry acid–base theory.
In chemistry, an amphoteric compound (from Greek amphoteros 'both') is a molecule or ion that can react both as an acid and as a base. [1] What exactly this can mean depends on which definitions of acids and bases are being used.
One use of conjugate acids and bases lies in buffering systems, which include a buffer solution. In a buffer, a weak acid and its conjugate base (in the form of a salt), or a weak base and its conjugate acid, are used in order to limit the pH change during a titration process. Buffers have both organic and non-organic chemical applications.
The ECW model is a quantitative model that describes and predicts the strength of Lewis acid base interactions, −ΔH. The model assigned E and C parameters to many Lewis acids and bases. Each acid is characterized by an E A and a C A. Each base is likewise characterized by its own E B and C B. The E and C parameters refer, respectively, to ...
The essence of Brønsted–Lowry theory is that an acid only exists as such in relation to a base, and vice versa. Water is amphoteric as it can act as an acid or as a base. In the image shown at the right one molecule of H2O acts as a base and gains H+ to become H3O+ while the other acts as an acid and loses H+ to become OH−.
In 1923, he recognized that acid–base reactions involved the transfer of a proton, from the acid (proton donor) to the base (proton acceptor). [8] Almost simultaneously and independently, the British chemist Martin Lowry arrived at the same conclusion, thus the name Brønsted–Lowry acid–base theory. [9]
In acid catalysis and base catalysis, a chemical reaction is catalyzed by an acid or a base. By Brønsted–Lowry acid–base theory, the acid is the proton (hydrogen ion, H +) donor and the base is the proton acceptor. Typical reactions catalyzed by proton transfer are esterifications and aldol reactions.