enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Proof by contradiction - Wikipedia

    en.wikipedia.org/wiki/Proof_by_contradiction

    In logic, proof by contradiction is a form of proof that establishes the truth or the validity of a proposition by showing that assuming the proposition to be false leads to a contradiction. Although it is quite freely used in mathematical proofs, not every school of mathematical thought accepts this kind of nonconstructive proof as universally ...

  3. Reductio ad absurdum - Wikipedia

    en.wikipedia.org/wiki/Reductio_ad_absurdum

    The second example is a mathematical proof by contradiction (also known as an indirect proof [6]), which argues that the denial of the premise would result in a logical contradiction (there is a "smallest" number and yet there is a number smaller than it).

  4. Mathematical proof - Wikipedia

    en.wikipedia.org/wiki/Mathematical_proof

    In proof by contradiction, also known by the Latin phrase reductio ad absurdum (by reduction to the absurd), it is shown that if some statement is assumed true, a logical contradiction occurs, hence the statement must be false. A famous example involves the proof that is an irrational number:

  5. Vieta jumping - Wikipedia

    en.wikipedia.org/wiki/Vieta_jumping

    The concept of standard Vieta jumping is a proof by contradiction, and consists of the following four steps: [7] Assume toward a contradiction that some solution (a 1, a 2, ...) exists that violates the given requirements. Take the minimal such solution according to some definition of minimality.

  6. Zeno's paradoxes - Wikipedia

    en.wikipedia.org/wiki/Zeno's_paradoxes

    Zeno's arguments may then be early examples of a method of proof called reductio ad absurdum, also known as proof by contradiction. Thus Plato has Zeno say the purpose of the paradoxes "is to show that their hypothesis that existences are many, if properly followed up, leads to still more absurd results than the hypothesis that they are one."

  7. Resolution (logic) - Wikipedia

    en.wikipedia.org/wiki/Resolution_(logic)

    This resolution technique uses proof by contradiction and is based on the fact that any sentence in propositional logic can be transformed into an equivalent sentence in conjunctive normal form. [4] The steps are as follows. All sentences in the knowledge base and the negation of the sentence to be proved (the conjecture) are conjunctively ...

  8. Proof by infinite descent - Wikipedia

    en.wikipedia.org/wiki/Proof_by_infinite_descent

    In mathematics, a proof by infinite descent, also known as Fermat's method of descent, is a particular kind of proof by contradiction [1] used to show that a statement cannot possibly hold for any number, by showing that if the statement were to hold for a number, then the same would be true for a smaller number, leading to an infinite descent and ultimately a contradiction. [2]

  9. Principle of explosion - Wikipedia

    en.wikipedia.org/wiki/Principle_of_explosion

    The proof of this principle was first given by 12th-century French philosopher William of Soissons. [6] Due to the principle of explosion, the existence of a contradiction (inconsistency) in a formal axiomatic system is disastrous; since any statement can be proven, it trivializes the concepts of truth and falsity. [7]