enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Proof by contradiction - Wikipedia

    en.wikipedia.org/wiki/Proof_by_contradiction

    In logic, proof by contradiction is a form of proof that establishes the truth or the validity of a proposition by showing that assuming the proposition to be false leads to a contradiction. Although it is quite freely used in mathematical proofs, not every school of mathematical thought accepts this kind of nonconstructive proof as universally ...

  3. Mathematical proof - Wikipedia

    en.wikipedia.org/wiki/Mathematical_proof

    A mathematical proof is a deductive argument for a mathematical ... this takes the form of a proof by contradiction in which the nonexistence of the object is proved ...

  4. Proof by infinite descent - Wikipedia

    en.wikipedia.org/wiki/Proof_by_infinite_descent

    In mathematics, a proof by infinite descent, also known as Fermat's method of descent, is a particular kind of proof by contradiction [1] used to show that a statement cannot possibly hold for any number, by showing that if the statement were to hold for a number, then the same would be true for a smaller number, leading to an infinite descent and ultimately a contradiction. [2]

  5. Cantor's diagonal argument - Wikipedia

    en.wikipedia.org/wiki/Cantor's_diagonal_argument

    In which case, if P 1 (S) is the set of one-element subsets of S and f is a proposed bijection from P 1 (S) to P(S), one is able to use proof by contradiction to prove that |P 1 (S)| < |P(S)|. The proof follows by the fact that if f were indeed a map onto P(S), then we could find r in S, such that f({r}) coincides with the modified diagonal set ...

  6. Constructive proof - Wikipedia

    en.wikipedia.org/wiki/Constructive_proof

    Some non-constructive proofs show that if a certain proposition is false, a contradiction ensues; consequently the proposition must be true (proof by contradiction). However, the principle of explosion (ex falso quodlibet) has been accepted in some varieties of constructive mathematics, including intuitionism.

  7. Vieta jumping - Wikipedia

    en.wikipedia.org/wiki/Vieta_jumping

    Unlike standard Vieta jumping, constant descent is not a proof by contradiction, and it consists of the following four steps: [10] The equality case is proven so that it may be assumed that a > b. b and k are fixed and the expression relating a, b, and k is rearranged to form a quadratic with coefficients in terms of b and k, one of whose roots ...

  8. Principle of explosion - Wikipedia

    en.wikipedia.org/wiki/Principle_of_explosion

    The proof of this principle was first given by 12th-century French philosopher William of Soissons. [6] Due to the principle of explosion, the existence of a contradiction (inconsistency) in a formal axiomatic system is disastrous; since any statement can be proven, it trivializes the concepts of truth and falsity. [7]

  9. Resolution (logic) - Wikipedia

    en.wikipedia.org/wiki/Resolution_(logic)

    This resolution technique uses proof by contradiction and is based on the fact that any sentence in propositional logic can be transformed into an equivalent sentence in conjunctive normal form. [4] The steps are as follows. All sentences in the knowledge base and the negation of the sentence to be proved (the conjecture) are conjunctively ...