enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Miller–Rabin primality test - Wikipedia

    en.wikipedia.org/wiki/MillerRabin_primality_test

    The MillerRabin primality test or RabinMiller primality test is a probabilistic primality test: an algorithm which determines whether a given number is likely to be prime, similar to the Fermat primality test and the Solovay–Strassen primality test. It is of historical significance in the search for a polynomial-time deterministic ...

  3. Primality test - Wikipedia

    en.wikipedia.org/wiki/Primality_test

    The MillerRabin primality test and Solovay–Strassen primality test are more sophisticated variants, which detect all composites (once again, this means: for every composite number n, at least 3/4 (MillerRabin) or 1/2 (Solovay–Strassen) of numbers a are witnesses of compositeness of n). These are also compositeness tests.

  4. Primality Testing for Beginners - Wikipedia

    en.wikipedia.org/wiki/Primality_Testing_for...

    The first part of the book concludes with chapter 4, on the history of prime numbers and primality testing, including the prime number theorem (in a weakened form), applications of prime numbers in cryptography, and the widely used MillerRabin primality test, which runs in randomized polynomial time. [5]

  5. Talk:Miller–Rabin primality test - Wikipedia

    en.wikipedia.org/wiki/Talk:MillerRabin...

    "The Miller-Rabin test is stronger than the Solovay-Strassen primality test in the sense the set of strong liars of the Miller-Rabin test is a subset of the set of the Solovay-Strassen primality test." If there's no feedback, I'm going to make one of these changes in a few days. CRGreathouse (talk • contribs) 17:01, 5 August 2006 (UTC)

  6. Generation of primes - Wikipedia

    en.wikipedia.org/wiki/Generation_of_primes

    A prime sieve or prime number sieve is a fast type of algorithm for finding primes. There are many prime sieves. The simple sieve of Eratosthenes (250s BCE), the sieve of Sundaram (1934), the still faster but more complicated sieve of Atkin [1] (2003), sieve of Pritchard (1979), and various wheel sieves [2] are most common.

  7. Strong pseudoprime - Wikipedia

    en.wikipedia.org/wiki/Strong_pseudoprime

    They are listed in Table 7 of. [2] The smallest such number is 25326001. This means that, if n is less than 25326001 and n is a strong probable prime to bases 2, 3, and 5, then n is prime. Carrying this further, 3825123056546413051 is the smallest number that is a strong pseudoprime to the 9 bases 2, 3, 5, 7, 11, 13, 17, 19, and 23.

  8. Primality certificate - Wikipedia

    en.wikipedia.org/wiki/Primality_certificate

    4 (85−1)/6 ≡ 16 (mod 85), 4 (85−1)/14 ≡ 16 (mod 85). We would falsely conclude that 85 is prime. We don't want to just force the verifier to factor the number, so a better way to avoid this issue is to give primality certificates for each of the prime factors of n − 1 as well, which are just smaller instances of the original problem.

  9. Robert M. Solovay - Wikipedia

    en.wikipedia.org/wiki/Robert_M._Solovay

    Solovay earned his Ph.D. from the University of Chicago in 1964 under the direction of Saunders Mac Lane, with a dissertation on A Functorial Form of the Differentiable Riemann–Roch theorem. [1] Solovay has spent his career at the University of California at Berkeley, where his Ph.D. students include W. Hugh Woodin and Matthew Foreman. [2]