Search results
Results from the WOW.Com Content Network
The Miller–Rabin primality test or Rabin–Miller primality test is a probabilistic primality test: an algorithm which determines whether a given number is likely to be prime, similar to the Fermat primality test and the Solovay–Strassen primality test. It is of historical significance in the search for a polynomial-time deterministic ...
The Miller–Rabin primality test and Solovay–Strassen primality test are more sophisticated variants, which detect all composites (once again, this means: for every composite number n, at least 3/4 (Miller–Rabin) or 1/2 (Solovay–Strassen) of numbers a are witnesses of compositeness of n). These are also compositeness tests.
The first part of the book concludes with chapter 4, on the history of prime numbers and primality testing, including the prime number theorem (in a weakened form), applications of prime numbers in cryptography, and the widely used Miller–Rabin primality test, which runs in randomized polynomial time.
function miller_rabin_test: Input #1: n > 3, an odd integer to be tested for primality Input #2: k, the number of rounds of testing to perform Output: “composite” if n is found to be composite, “probably prime” otherwise let s > 0 and d odd > 0 such that n − 1 = 2 s ·d # by factoring out powers of 2 from n − 1 repeat k times: a ← ...
They are listed in Table 7 of. [2] The smallest such number is 25326001. This means that, if n is less than 25326001 and n is a strong probable prime to bases 2, 3, and 5, then n is prime. Carrying this further, 3825123056546413051 is the smallest number that is a strong pseudoprime to the 9 bases 2, 3, 5, 7, 11, 13, 17, 19, and 23.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
In mathematics and computer science, computational number theory, also known as algorithmic number theory, is the study of computational methods for investigating and solving problems in number theory and arithmetic geometry, including algorithms for primality testing and integer factorization, finding solutions to diophantine equations, and explicit methods in arithmetic geometry. [1]
A prime sieve or prime number sieve is a fast type of algorithm for finding primes. There are many prime sieves. The simple sieve of Eratosthenes (250s BCE), the sieve of Sundaram (1934), the still faster but more complicated sieve of Atkin [1] (2003), sieve of Pritchard (1979), and various wheel sieves [2] are most common.