Search results
Results from the WOW.Com Content Network
The Cope rearrangement is an extensively studied organic reaction involving the [3,3] sigmatropic rearrangement of 1,5-dienes. [ 14 ] [ 15 ] [ 16 ] It was developed by Arthur C. Cope . For example, 3,4-dimethyl-1,5-hexadiene heated to 300 °C yields 2,6-octadiene.
The barrelene rearrangement is more complex than the Mariano and Pratt examples since there are two sp 3-hybridized carbons. Each bridgehead carbon has three (ethylenic) π bonds, and any two can undergo the di‑π-methane rearrangement. Moreover, unlike the acyclic Mariano and Pratt dienes, the barrelene reaction requires a triplet excited state.
The rearrangement is widely used in organic synthesis. It is symmetry-allowed when it is suprafacial on all components. The transition state of the molecule passes through a boat or chair like transition state. An example of the Cope rearrangement is the expansion of a cyclobutane ring to a cycloocta-1,5-diene ring:
Example of a pericycle reaction: the norcaradiene–cyclohexatriene rearrangement. In organic chemistry, a pericyclic reaction is the type of organic reaction wherein the transition state of the molecule has a cyclic geometry, the reaction progresses in a concerted fashion, and the bond orbitals involved in the reaction overlap in a continuous cycle at the transition state.
In organic chemistry, an electrocyclic reaction is a type of pericyclic, rearrangement reaction where the net result is one pi bond being converted into one sigma bond or vice versa. [1] These reactions are usually categorized by the following criteria: Reactions can be either photochemical or thermal.
Similar results were found in a 1995 study by Suarez, Sordo, and Sordo which used ab initio calculations to study the kinetic and thermodynamic control of the reaction of sulfur dioxide with 1,3-dienes. [4] Proposed transition state for reaction of 1,2-dimethylidenecyclohexane with SO 2 to give a sulfolene through a cheletropic reaction
The reaction is then completed either by the reformation of the carbonyl through an 1,2-rearrangement or by the formation of the epoxide. There are two possible carbonyl products: one formed by migration of R 1 (4) and the other by migration of R 2 (5). The relative yield of each possible carbonyl is determined by the migratory preferences of ...
Thermolysis converts 1 to (E,E) geometric isomer 2, but 3 to (E,Z) isomer 4.. The Woodward–Hoffmann rules (or the pericyclic selection rules) [1] are a set of rules devised by Robert Burns Woodward and Roald Hoffmann to rationalize or predict certain aspects of the stereochemistry and activation energy of pericyclic reactions, an important class of reactions in organic chemistry.