Search results
Results from the WOW.Com Content Network
Combinations and permutations in the mathematical sense are described in several articles. Described together, in-depth: Twelvefold way; Explained separately in a more accessible way: Combination; Permutation; For meanings outside of mathematics, please see both words’ disambiguation pages: Combination (disambiguation) Permutation ...
Combinatorics is an area of mathematics primarily concerned with counting, both as a means and as an end to obtaining results, and certain properties of finite structures.It is closely related to many other areas of mathematics and has many applications ranging from logic to statistical physics and from evolutionary biology to computer science.
In mathematics, a combination is a selection of items from a set that has distinct members, such that the order of selection does not matter (unlike permutations).For example, given three fruits, say an apple, an orange and a pear, there are three combinations of two that can be drawn from this set: an apple and a pear; an apple and an orange; or a pear and an orange.
In combinatorics, the twelvefold way is a systematic classification of 12 related enumerative problems concerning two finite sets, which include the classical problems of counting permutations, combinations, multisets, and partitions either of a set or of a number.
In the given example, there are 12 = 2(3!) permutations with property P 1, 6 = 3! permutations with property P 2 and no permutations have properties P 3 or P 4 as there are no restrictions for these two elements. The number of permutations satisfying the restrictions is thus: 4! − (12 + 6 + 0 + 0) + (4) = 24 − 18 + 4 = 10.
This is the limit of the probability that a randomly selected permutation of a large number of objects is a derangement. The probability converges to this limit extremely quickly as n increases, which is why !n is the nearest integer to n!/e. The above semi-log graph shows that the derangement graph lags the permutation graph by an almost ...
The three-choose-two combination yields two results, depending on whether a bin is allowed to have zero items. In both results the number of bins is 3. If zero is not allowed, the number of cookies should be n = 6, as described in the previous figure. If zero is allowed, the number of cookies should only be n = 3.
As a discrete probability space, the probability of any particular lottery outcome is atomic, meaning it is greater than zero. Therefore, the probability of any event is the sum of probabilities of the outcomes of the event. This makes it easy to calculate quantities of interest from information theory.