enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Adjacency matrix - Wikipedia

    en.wikipedia.org/wiki/Adjacency_matrix

    In graph theory and computer science, an adjacency matrix is a square matrix used to represent a finite graph. The elements of the matrix indicate whether pairs of vertices are adjacent or not in the graph. In the special case of a finite simple graph, the adjacency matrix is a (0,1)-matrix with zeros on its diagonal.

  3. Laplacian matrix - Wikipedia

    en.wikipedia.org/wiki/Laplacian_matrix

    In the matrix notation, the adjacency matrix of the undirected graph could, e.g., be defined as a Boolean sum of the adjacency matrix of the original directed graph and its matrix transpose, where the zero and one entries of are treated as logical, rather than numerical, values, as in the following example:

  4. Seidel adjacency matrix - Wikipedia

    en.wikipedia.org/wiki/Seidel_adjacency_matrix

    In mathematics, in graph theory, the Seidel adjacency matrix of a simple undirected graph G is a symmetric matrix with a row and column for each vertex, having 0 on the diagonal, −1 for positions whose rows and columns correspond to adjacent vertices, and +1 for positions corresponding to non-adjacent vertices.

  5. Prim's algorithm - Wikipedia

    en.wikipedia.org/wiki/Prim's_algorithm

    The adjacency matrix distributed between multiple processors for parallel Prim's algorithm. In each iteration of the algorithm, every processor updates its part of C by inspecting the row of the newly inserted vertex in its set of columns in the adjacency matrix. The results are then collected and the next vertex to include in the MST is ...

  6. Complete bipartite graph - Wikipedia

    en.wikipedia.org/wiki/Complete_bipartite_graph

    The adjacency matrix of a complete bipartite graph K m,n has eigenvalues √ nm, − √ nm and 0; with multiplicity 1, 1 and n + m − 2 respectively. [12] The Laplacian matrix of a complete bipartite graph K m,n has eigenvalues n + m, n, m, and 0; with multiplicity 1, m − 1, n − 1 and 1 respectively. A complete bipartite graph K m,n has m ...

  7. Hypergraph - Wikipedia

    en.wikipedia.org/wiki/Hypergraph

    In the case of a graph, the adjacency matrix is a square matrix which indicates whether pairs of vertices are adjacent. Likewise, we can define the adjacency matrix A = ( a i j ) {\displaystyle A=(a_{ij})} for a hypergraph in general where the hyperedges e k ≤ m {\displaystyle e_{k\leq m}} have real weights w e k ∈ R {\displaystyle w_{e_{k ...

  8. Adjacency algebra - Wikipedia

    en.wikipedia.org/wiki/Adjacency_algebra

    In algebraic graph theory, the adjacency algebra of a graph G is the algebra of polynomials in the adjacency matrix A(G) of the graph. It is an example of a matrix algebra and is the set of the linear combinations of powers of A. [1] Some other similar mathematical objects are also called "adjacency algebra".

  9. Clique problem - Wikipedia

    en.wikipedia.org/wiki/Clique_problem

    As Itai & Rodeh (1978) observe, the graph contains a triangle if and only if its adjacency matrix and the square of the adjacency matrix contain nonzero entries in the same cell. Therefore, fast matrix multiplication techniques can be applied to find triangles in time O (n 2.376).