Search results
Results from the WOW.Com Content Network
Because floating-point numbers have limited precision, only a subset of real or rational numbers are exactly representable; other numbers can be represented only approximately. Many languages have both a single precision (often called float) and a double precision type (often called double).
Integers, floating point numbers, strings, etc. are all considered "scalars". ^e PHP has two arbitrary-precision libraries. The BCMath library just uses strings as datatype.
The standard type hierarchy of Python 3. In computer science and computer programming, a data type (or simply type) is a collection or grouping of data values, usually specified by a set of possible values, a set of allowed operations on these values, and/or a representation of these values as machine types. [1]
String functions are used in computer programming languages to manipulate a string or query information about a string (some do both). Most programming languages that have a string datatype will have some string functions although there may be other low-level ways within each language to handle strings directly. In object-oriented languages ...
Single precision is termed REAL in Fortran; [1] SINGLE-FLOAT in Common Lisp; [2] float in C, C++, C# and Java; [3] Float in Haskell [4] and Swift; [5] and Single in Object Pascal , Visual Basic, and MATLAB. However, float in Python, Ruby, PHP, and OCaml and single in versions of Octave before 3.2 refer to double-precision numbers.
A floating-point number is a rational number, because it can be represented as one integer divided by another; for example 1.45 × 10 3 is (145/100)×1000 or 145,000 /100. The base determines the fractions that can be represented; for instance, 1/5 cannot be represented exactly as a floating-point number using a binary base, but 1/5 can be ...
List comprehension is a syntactic construct available in some programming languages for creating a list based on existing lists. It follows the form of the mathematical set-builder notation (set comprehension) as distinct from the use of map and filter functions.
Python supports normal floating point numbers, which are created when a dot is used in a literal (e.g. 1.1), when an integer and a floating point number are used in an expression, or as a result of some mathematical operations ("true division" via the / operator, or exponentiation with a negative exponent).