Search results
Results from the WOW.Com Content Network
An Elementary Treatise on Fourier's Series: And Spherical, Cylindrical, and Ellipsoidal Harmonics, with Applications to Problems in Mathematical Physics (2 ed.). Ginn. p. 30. Carslaw, Horatio Scott (1921). "Chapter 7: Fourier's Series". Introduction to the Theory of Fourier's Series and Integrals, Volume 1 (2 ed.). Macmillan and Company. p. 196.
A Fourier series (/ ˈ f ʊr i eɪ,-i ər / [1]) is an expansion of a periodic function into a sum of trigonometric functions. The Fourier series is an example of a trigonometric series. [2] By expressing a function as a sum of sines and cosines, many problems involving the function become easier to analyze because trigonometric functions are ...
A number of authors, notably Jean le Rond d'Alembert, and Carl Friedrich Gauss used trigonometric series to study the heat equation, [20] but the breakthrough development was the 1807 paper Mémoire sur la propagation de la chaleur dans les corps solides by Joseph Fourier, whose crucial insight was to model all functions by trigonometric series ...
The same discrete set is obtained by treating the duration of the segment as one period of a periodic function and computing the Fourier series coefficients. Sine and cosine transforms: When the input function has odd or even symmetry around the origin, the Fourier transform reduces to a sine transform or a cosine transform, respectively.
Harmonic analysis is a branch of mathematics concerned with investigating the connections between a function and its representation in frequency.The frequency representation is found by using the Fourier transform for functions on unbounded domains such as the full real line or by Fourier series for functions on bounded domains, especially periodic functions on finite intervals.
This is the sine series expansion of f(x) which is amenable to Fourier analysis. Multiplying both sides with sin n π x L {\textstyle \sin {\frac {n\pi x}{L}}} and integrating over [0, L ] results in
A trigonometric polynomial can be considered a periodic function on the real line, with period some divisor of , or as a function on the unit circle.. Trigonometric polynomials are dense in the space of continuous functions on the unit circle, with the uniform norm; [4] this is a special case of the Stone–Weierstrass theorem.
The coefficient functions a and b can be found by using variants of the Fourier cosine transform and the Fourier sine transform (the normalisations are, again, not standardised): = and = (). Older literature refers to the two transform functions, the Fourier cosine transform, a , and the Fourier sine transform, b .