Search results
Results from the WOW.Com Content Network
Refraction at interface. Many materials have a well-characterized refractive index, but these indices often depend strongly upon the frequency of light, causing optical dispersion. Standard refractive index measurements are taken at the "yellow doublet" sodium D line, with a wavelength (λ) of 589 nanometers.
Refraction, in acoustics, comparable to the refraction of electromagnetic radiation, is the bending of sound propagation trajectories (rays) in inhomogeneous elastic media (gases, liquids, and solids) in which the wave velocity is a function of spatial coordinates. Bending of acoustic rays in layered inhomogeneous media occurs towards a layer ...
As an example, water has a refractive index of 0.999 999 74 = 1 − 2.6 × 10 −7 for X-ray radiation at a photon energy of 30 keV (0.04 nm wavelength). [ 21 ] An example of a plasma with an index of refraction less than unity is Earth's ionosphere .
Refraction of light is the most commonly observed phenomenon, but other waves such as sound waves and water waves also experience refraction. How much a wave is refracted is determined by the change in wave speed and the initial direction of wave propagation relative to the direction of change in speed.
In a dispersive prism, material dispersion (a wavelength-dependent refractive index) causes different colors to refract at different angles, splitting white light into a spectrum. A compact fluorescent lamp seen through an Amici prism. Dispersion is the phenomenon in which the phase velocity of a wave depends on its frequency. [1]
A spectroscopic wavenumber can be converted into energy per photon E by Planck's relation: = ~. It can also be converted into wavelength of light: = ~, where n is the refractive index of the medium. Note that the wavelength of light changes as it passes through different media, however, the spectroscopic wavenumber (i.e., frequency) remains ...
where n is the refractive index, λ is the wavelength, A, B, C, etc., are coefficients that can be determined for a material by fitting the equation to measured refractive indices at known wavelengths. The coefficients are usually quoted for λ as the vacuum wavelength in micrometres. Usually, it is sufficient to use a two-term form of the ...
In physics, sound energy is a form of energy that can be heard by living things. Only those waves that have a frequency of 16 Hz to 20 kHz are audible to humans. However, this range is an average and will slightly change from individual to individual.