Search results
Results from the WOW.Com Content Network
If not and there are still pockets of water left, and they evaporate too slowly, then in about 3–4 billion years, once the amount of water vapor in the lower atmosphere rises to 40%, and the luminosity from the Sun reaches 35–40% more than its present-day value, [94] a "runaway greenhouse" effect will ensue, causing the atmosphere to warm ...
The Sun's luminosity will have increased by 35–40%, causing all water currently present in lakes and oceans to evaporate, if it had not done so earlier. The greenhouse effect caused by the massive, water-rich atmosphere will result in Earth's surface temperature rising to 1,400 K (1,130 °C; 2,060 °F), which is hot enough to melt some ...
The hydrogen and most of the helium in the Sun would have been produced by Big Bang nucleosynthesis in the first 20 minutes of the universe, and the heavier elements were produced by previous generations of stars before the Sun was formed, and spread into the interstellar medium during the final stages of stellar life and by events such as ...
In the long term, the greatest changes in the Solar System will come from changes in the Sun itself as it ages. As the Sun burns through its hydrogen fuel supply, it gets hotter and burns the remaining fuel even faster. As a result, the Sun is growing brighter at a rate of ten percent every 1.1 billion years. [117]
The Sun is a burning plasma that has reached fusion ignition, meaning the Sun's plasma temperature is maintained solely by energy released from fusion. The Sun has been burning hydrogen for 4.5 billion years and is about halfway through its life cycle.
The universe will become extremely dark after the last stars burn out. Even so, there can still be occasional light in the universe. One of the ways the universe can be illuminated is if two carbon – oxygen white dwarfs with a combined mass of more than the Chandrasekhar limit of about 1.4 solar masses happen to merge.
The core contains 34% of the Sun's mass, but only 3% of the Sun's volume, and it generates 99% of the fusion power of the Sun. There are two distinct reactions in which four hydrogen nuclei may eventually result in one helium nucleus: the proton–proton chain reaction – which is responsible for most of the Sun's released energy – and the ...
The faint young Sun paradox or faint young Sun problem describes the apparent contradiction between observations of liquid water early in Earth's history and the astrophysical expectation that the Sun's output would have been only 70 percent as intense during that epoch as it is during the modern epoch. [1]