enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Refractive index - Wikipedia

    en.wikipedia.org/wiki/Refractive_index

    The refractive index measures the phase velocity of light, which does not carry information. [20] [a] The phase velocity is the speed at which the crests of the wave move and can be faster than the speed of light in vacuum, and thereby give a refractive index below 1.

  3. Optical path length - Wikipedia

    en.wikipedia.org/wiki/Optical_path_length

    where n is the local refractive index as a function of distance along the path C. An electromagnetic wave propagating along a path C has the phase shift over C as if it was propagating a path in a vacuum, length of which, is equal to the optical path length of C.

  4. List of refractive indices - Wikipedia

    en.wikipedia.org/wiki/List_of_refractive_indices

    Refraction at interface. Many materials have a well-characterized refractive index, but these indices often depend strongly upon the frequency of light, causing optical dispersion. Standard refractive index measurements are taken at the "yellow doublet" sodium D line, with a wavelength (λ) of 589 nanometers.

  5. Cauchy's equation - Wikipedia

    en.wikipedia.org/wiki/Cauchy's_equation

    where n is the refractive index, λ is the wavelength, A, B, C, etc., are coefficients that can be determined for a material by fitting the equation to measured refractive indices at known wavelengths. The coefficients are usually quoted for λ as the vacuum wavelength in micrometres. Usually, it is sufficient to use a two-term form of the ...

  6. Fresnel equations - Wikipedia

    en.wikipedia.org/wiki/Fresnel_equations

    In optics, one usually knows the refractive index n of the medium, which is the ratio of the speed of light in vacuum (c) to the speed of light in the medium. In the analysis of partial reflection and transmission, one is also interested in the electromagnetic wave impedance Z , which is the ratio of the amplitude of E to the amplitude of H .

  7. Dispersion (optics) - Wikipedia

    en.wikipedia.org/wiki/Dispersion_(optics)

    The variation of refractive index vs. vacuum wavelength for various glasses. The wavelengths of visible light are shaded in grey. Influences of selected glass component additions on the mean dispersion of a specific base glass (n F valid for λ = 486 nm (blue), n C valid for λ = 656 nm (red)) [3]

  8. Sellmeier equation - Wikipedia

    en.wikipedia.org/wiki/Sellmeier_equation

    For common optical glasses, the refractive index calculated with the three-term Sellmeier equation deviates from the actual refractive index by less than 5×10 −6 over the wavelengths' range [5] of 365 nm to 2.3 μm, which is of the order of the homogeneity of a glass sample. [6]

  9. Transparency and translucency - Wikipedia

    en.wikipedia.org/wiki/Transparency_and_translucency

    The refractive index is the parameter reflecting the speed of light in a material. (Refractive index is the ratio of the speed of light in vacuum to the speed of light in a given medium. The refractive index of vacuum is therefore 1.) The larger the refractive index, the more slowly light travels in that medium.