Search results
Results from the WOW.Com Content Network
In mathematics, a character sum is a sum () of values of a Dirichlet character χ modulo N, taken over a given range of values of n.Such sums are basic in a number of questions, for example in the distribution of quadratic residues, and in particular in the classical question of finding an upper bound for the least quadratic non-residue modulo N.
Srinivasa Ramanujan mentioned the sums in a 1918 paper. [1] In addition to the expansions discussed in this article, Ramanujan's sums are used in the proof of Vinogradov's theorem that every sufficiently large odd number is the sum of three primes. [2]
[[Category:Bangladesh templates]] to the <includeonly> section at the bottom of that page. Otherwise, add <noinclude>[[Category:Bangladesh templates]]</noinclude> to the end of the template code, making sure it starts on the same line as the code's last character.
Ramanujan summation is a technique invented by the mathematician Srinivasa Ramanujan for assigning a value to divergent infinite series.Although the Ramanujan summation of a divergent series is not a sum in the traditional sense, it has properties that make it mathematically useful in the study of divergent infinite series, for which conventional summation is undefined.
The initial idea is usually attributed to the work of Hardy with Srinivasa Ramanujan a few years earlier, in 1916 and 1917, on the asymptotics of the partition function.It was taken up by many other researchers, including Harold Davenport and I. M. Vinogradov, who modified the formulation slightly (moving from complex analysis to exponential sums), without changing the broad lines.
In mathematics, the Rogers–Ramanujan identities are two identities related to basic hypergeometric series and integer partitions. The identities were first discovered and proved by Leonard James Rogers ( 1894 ), and were subsequently rediscovered (without a proof) by Srinivasa Ramanujan some time before 1913.
Ramanujan summation is a method to isolate the constant term in the Euler–Maclaurin formula for the partial sums of a series. For a function f , the classical Ramanujan sum of the series ∑ k = 1 ∞ f ( k ) {\displaystyle \textstyle \sum _{k=1}^{\infty }f(k)} is defined as
Place a stub template at the very end of the article, after the "External links" section, any navigation templates, and the category tags. As usual, templates are added by including their name inside double braces, e.g. {{Bangladesh-law-stub}}.