enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Kirchhoff's law of thermal radiation - Wikipedia

    en.wikipedia.org/wiki/Kirchhoff's_law_of_thermal...

    This yields Kirchhoff's law: α λ = ε λ {\displaystyle \alpha _{\lambda }=\varepsilon _{\lambda }} By a similar, but more complicated argument, it can be shown that, since black-body radiation is equal in every direction (isotropic), the emissivity and the absorptivity, if they happen to be dependent on direction, must again be equal for any ...

  3. History of spectroscopy - Wikipedia

    en.wikipedia.org/wiki/History_of_spectroscopy

    Kirchhoff's applications of this law to spectroscopy are captured in three laws of spectroscopy: An incandescent solid, liquid or gas under high pressure emits a continuous spectrum. A hot gas under low pressure emits a "bright-line" or emission-line spectrum. A continuous spectrum source viewed through a cool, low-density gas produces an ...

  4. Kirchhoff's laws - Wikipedia

    en.wikipedia.org/wiki/Kirchhoff's_laws

    Kirchhoff's laws, named after Gustav Kirchhoff, may refer to: Kirchhoff's circuit laws in electrical engineering; Kirchhoff's law of thermal radiation; Kirchhoff equations in fluid dynamics; Kirchhoff's three laws of spectroscopy; Kirchhoff's law of thermochemistry; Kirchhoff's theorem about the number of spanning trees in a graph

  5. Emissivity - Wikipedia

    en.wikipedia.org/wiki/Emissivity

    Emissivity of a body at a given temperature is the ratio of the total emissive power of a body to the total emissive power of a perfectly black body at that temperature. Following Planck's law, the total energy radiated increases with temperature while the peak of the emission spectrum shifts to shorter wavelengths. The energy emitted at ...

  6. Gustav Kirchhoff - Wikipedia

    en.wikipedia.org/wiki/Gustav_Kirchhoff

    Gustav Robert Kirchhoff (German: [ˈgʊs.taf ˈkɪʁçhɔf]; 12 March 1824 – 17 October 1887) was a German physicist, chemist and mathematican who contributed to the fundamental understanding of electrical circuits, spectroscopy and the emission of black-body radiation by heated objects.

  7. Spectroscopy - Wikipedia

    en.wikipedia.org/wiki/Spectroscopy

    The measured spectra are used to determine the chemical composition and physical properties of astronomical objects (such as their temperature, density of elements in a star, velocity, black holes and more). [12] An important use for spectroscopy is in biochemistry. Molecular samples may be analyzed for species identification and energy content ...

  8. Black-body radiation - Wikipedia

    en.wikipedia.org/wiki/Black-body_radiation

    Kirchhoff's 1860 paper did not mention the second law of thermodynamics, and of course did not mention the concept of entropy which had not at that time been established. In a more considered account in a book in 1862, Kirchhoff mentioned the connection of his law with Carnot's principle , which is a form of the second law.

  9. Spectrochemistry - Wikipedia

    en.wikipedia.org/wiki/Spectrochemistry

    Therefore, by recognizing that each atom and molecule has its spectrum Kirchhoff and Robert Bunsen established spectroscopy as a scientific tool for probing atomic and molecular structures and founded the field of spectrochemical analysis for analyzing the composition of materials. [3] Robert Bunsen - German Chemist