Search results
Results from the WOW.Com Content Network
Both force and displacement are vectors. The work done is given by the dot product of the two vectors, where the result is a scalar. When the force F is constant and the angle θ between the force and the displacement s is also constant, then the work done is given by: =
Thermodynamic work is one of the principal kinds of process by which a thermodynamic system can interact with and transfer energy to its surroundings. This results in externally measurable macroscopic forces on the system's surroundings, which can cause mechanical work, to lift a weight, for example, [1] or cause changes in electromagnetic, [2] [3] [4] or gravitational [5] variables.
In the application of the principle of virtual work it is often convenient to obtain virtual displacements from the velocities of the system. For the n particle system, let the velocity of each particle P i be V i, then the virtual displacement δr i can also be written in the form [2] = = ˙, =, …,.
Fick's first law relates the diffusive flux to the gradient of the concentration. It postulates that the flux goes from regions of high concentration to regions of low concentration, with a magnitude that is proportional to the concentration gradient (spatial derivative), or in simplistic terms the concept that a solute will move from a region of high concentration to a region of low ...
Castigliano's method for calculating displacements is an application of his second theorem, which states: If the strain energy of a linearly elastic structure can be expressed as a function of generalised force Q i then the partial derivative of the strain energy with respect to generalised force gives the generalised displacement q i in the direction of Q i.
Energy is transferred to an object by work when an external force displaces or deforms the object. The quantity of energy transferred is the vector dot product of the force and the displacement of the object. As forces are applied to the system they are distributed internally to its component parts.
Betti's theorem, also known as Maxwell–Betti reciprocal work theorem, discovered by Enrico Betti in 1872, states that for a linear elastic structure subject to two sets of forces {P i} i=1,...,n and {Q j}, j=1,2,...,n, the work done by the set P through the displacements produced by the set Q is equal to the work done by the set Q through the displacements produced by the set P.
There are various types of potential energy, each associated with a particular type of force. For example, the work of an elastic force is called elastic potential energy; work of the gravitational force is called gravitational potential energy; work of the Coulomb force is called electric potential energy; work of the strong nuclear force or weak nuclear force acting on the baryon charge is ...