Search results
Results from the WOW.Com Content Network
The following other wikis use this file: Usage on bg.wikipedia.org Умножение на матрици; Usage on hy.wikipedia.org Մասնակից:Alberti1993
Swapping two rows, Multiplying a row by a nonzero number, Adding a multiple of one row to another row. Using these operations, a matrix can always be transformed into an upper triangular matrix (possibly bordered by rows or columns of zeros), and in fact one that is in row echelon form.
A table is an arrangement of columns and rows that organizes and positions data or images. ... + Multiplication table |-! ... Table/example row template | 50 ...
Matrix multiplication shares some properties with usual multiplication. However, matrix multiplication is not defined if the number of columns of the first factor differs from the number of rows of the second factor, and it is non-commutative, [10] even when the product remains defined after changing the order of the factors. [11] [12]
A spreadsheet consists of a table of cells arranged into rows and columns and referred to by the X and Y locations. X locations, the columns, are normally represented by letters, "A," "B," "C," etc., while rows are normally represented by numbers, 1, 2, 3, etc. A single cell can be referred to by addressing its row and column, "C10".
A row can be replaced by the sum of that row and a multiple of another row. R i + k R j → R i , where i ≠ j {\displaystyle R_{i}+kR_{j}\rightarrow R_{i},{\mbox{where }}i\neq j} If E is an elementary matrix, as described below, to apply the elementary row operation to a matrix A , one multiplies A by the elementary matrix on the left, EA .
The transpose (indicated by T) of any row vector is a column vector, and the transpose of any column vector is a row vector: […] = [] and [] = […]. The set of all row vectors with n entries in a given field (such as the real numbers ) forms an n -dimensional vector space ; similarly, the set of all column vectors with m entries forms an m ...
To see why a row or column cannot contain the same element more than once, let a, x, and y all be elements of a group, with x and y distinct. Then in the row representing the element a, the column corresponding to x contains the product ax, and similarly the column corresponding to y contains the product ay.