Search results
Results from the WOW.Com Content Network
Square roots of negative numbers are called imaginary because in early-modern mathematics, only what are now called real numbers, obtainable by physical measurements or basic arithmetic, were considered to be numbers at all – even negative numbers were treated with skepticism – so the square root of a negative number was previously considered undefined or nonsensical.
This formula distinguishes the complex number i from any real number, since the square of any (negative or positive) real number is always a non-negative real number. With this definition of multiplication and addition, familiar rules for the arithmetic of rational or real numbers continue to hold for complex numbers.
An illustration of the complex plane. The imaginary numbers are on the vertical coordinate axis. Although the Greek mathematician and engineer Heron of Alexandria is noted as the first to present a calculation involving the square root of a negative number, [6] [7] it was Rafael Bombelli who first set down the rules for multiplication of complex numbers in 1572.
For a positive real number x, denotes the positive square root of x and denotes the positive real n th root. A negative real number −x has no real-valued square roots, but when x is treated as a complex number it has two imaginary square roots, + and , where i is the imaginary unit.
The principal cube root is the cube root with the largest real part. In the case of negative real numbers, the largest real part is shared by the two nonreal cube roots, and the principal cube root is the one with positive imaginary part. So, for negative real numbers, the real cube root is not the principal cube root. For positive real numbers ...
The cube of a number n is denoted n 3, using a superscript 3, [a] for example 2 3 = 8. The cube operation can also be defined for any other mathematical expression, for example (x + 1) 3. The cube is also the number multiplied by its square: n 3 = n × n 2 = n × n × n. The cube function is the function x ↦ x 3 (often denoted y = x 3) that
A Cabtaxi number is the smallest positive number that can be expressed as a sum of two integer cubes in n ways, allowing the cubes to be negative or zero as well as positive. The smallest cabtaxi number after Cabtaxi(1) = 0, is Cabtaxi(2) = 91, [5] expressed as:
The plus sign (+) and the minus sign (−) are mathematical symbols used to denote positive and negative functions, respectively. In addition, + represents the operation of addition , which results in a sum , while − represents subtraction , resulting in a difference . [ 1 ]