enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Orbital hybridisation - Wikipedia

    en.wikipedia.org/wiki/Orbital_hybridisation

    Chemist Linus Pauling first developed the hybridisation theory in 1931 to explain the structure of simple molecules such as methane (CH 4) using atomic orbitals. [2] Pauling pointed out that a carbon atom forms four bonds by using one s and three p orbitals, so that "it might be inferred" that a carbon atom would form three bonds at right angles (using p orbitals) and a fourth weaker bond ...

  3. Isovalent hybridization - Wikipedia

    en.wikipedia.org/wiki/Isovalent_hybridization

    In chemistry, isovalent or second order hybridization is an extension of orbital hybridization, the mixing of atomic orbitals into hybrid orbitals which can form chemical bonds, to include fractional numbers of atomic orbitals of each type (s, p, d). It allows for a quantitative depiction of bond formation when the molecular geometry deviates ...

  4. Chemical bonding of water - Wikipedia

    en.wikipedia.org/wiki/Chemical_bonding_of_water

    As such, the predicted shape and bond angle of sp 3 hybridization is tetrahedral and 109.5°. This is in open agreement with the true bond angle of 104.45°. The difference between the predicted bond angle and the measured bond angle is traditionally explained by the electron repulsion of the two lone pairs occupying two sp 3 hybridized orbitals.

  5. Nucleic acid thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Nucleic_acid_thermodynamics

    For DNA oligonucleotides, i.e. short sequences of DNA, the thermodynamics of hybridization can be accurately described as a two-state process. In this approximation one neglects the possibility of intermediate partial binding states in the formation of a double strand state from two single stranded oligonucleotides.

  6. Nucleic acid hybridization - Wikipedia

    en.wikipedia.org/wiki/Nucleic_acid_hybridization

    Fluorescence in situ hybridization (FISH) is a laboratory method used to detect and locate a DNA sequence, often on a particular chromosome. [4]In the 1960s, researchers Joseph Gall and Mary Lou Pardue found that molecular hybridization could be used to identify the position of DNA sequences in situ (i.e., in their natural positions within a chromosome).

  7. Hybridisation - Wikipedia

    en.wikipedia.org/wiki/Hybridisation

    Hybridization (or hybridisation) may refer to: Hybridization (biology) , the process of combining different varieties of organisms to create a hybrid Orbital hybridization , in chemistry, the mixing of atomic orbitals into new hybrid orbitals

  8. Orbital overlap - Wikipedia

    en.wikipedia.org/wiki/Orbital_overlap

    Orbital overlap can lead to bond formation. The general principle for orbital overlap is that, the greater the greater the over between orbitals, the greater is the bond strength. Linus Pauling explained the importance of orbital overlap in the molecular bond angles observed through experimentation; it is the basis for orbital hybridization.

  9. Polyhedral skeletal electron pair theory - Wikipedia

    en.wikipedia.org/wiki/Polyhedral_skeletal...

    The other sp-hybrid radiates into the center of the structure forming a large bonding molecular orbital at the center of the cluster. The remaining two unhybridized orbitals lie along the tangent of the sphere like structure creating more bonding and antibonding orbitals between the boron vertices. [9] The orbital diagram breaks down as follows: