Search results
Results from the WOW.Com Content Network
Column chromatography in chemistry is a chromatography method used to isolate a single chemical compound from a mixture. Chromatography is able to separate substances based on differential absorption of compounds to the adsorbent; compounds move through the column at different rates, allowing them to be separated into fractions.
Thin-layer chromatography (TLC) is a chromatography technique that separates components in non-volatile mixtures. [1] It is performed on a TLC plate made up of a non-reactive solid coated with a thin layer of adsorbent material. [2] This is called the stationary phase. [2]
Elution then is the process of removing analytes from the adsorbent by running a solvent, called an eluent, past the adsorbent–analyte complex. As the solvent molecules "elute", or travel down through the chromatography column, they can either pass by the adsorbent–analyte complex or displace the analyte by binding to the adsorbent in its ...
Paper chromatography is a technique that involves placing a small dot or line of sample solution onto a strip of chromatography paper. The paper is placed in a container with a shallow layer of solvent and sealed. As the solvent rises through the paper, it meets the sample mixture, which starts to travel up the paper with the solvent.
A monolithic HPLC column, or monolithic column, is a column used in high-performance liquid chromatography (HPLC). The internal structure of the monolithic column is created in such a way that many channels form inside the column.
Between each sample reading, the mobile phase and filter paper are changed to ensure the best outcomes. The spot capacity (analogous to peak capacity in HPLC) can be increased by developing the plate with two different solvents, using two-dimensional chromatography. [8] The procedure begins with development of a sample loaded plate with first ...
Normal phase chromatography retains molecules via an adsorptive mechanism, and is used for the analysis of solutes readily soluble in organic solvents. Separation is achieved based on the polarity differences among functional groups such as amines, acids, metal complexes, etc. as well as their steric properties, while in reversed-phase ...
Further simulations and analysis of this equation [19] show that the square root dependence on the time is originated from the decrease of the concentrations near the surface under ideal adsorption conditions. Also, this equation only works for the beginning of the adsorption when a well-behaved concentration gradient forms near the surface.