Search results
Results from the WOW.Com Content Network
In mathematics, an elementary function is a function of a single variable (typically real or complex) that is defined as taking sums, products, roots and compositions of finitely many polynomial, rational, trigonometric, hyperbolic, and exponential functions, and their inverses (e.g., arcsin, log, or x 1/n).
If f : X → Y is any function, then f ∘ id X = f = id Y ∘ f, where "∘" denotes function composition. [4] In particular, id X is the identity element of the monoid of all functions from X to X (under function composition). Since the identity element of a monoid is unique, [5] one can alternately define the identity function on M to be ...
During the mid-20th century, some mathematicians adopted postfix notation, writing xf for f(x) and (xf)g for g(f(x)). [18] This can be more natural than prefix notation in many cases, such as in linear algebra when x is a row vector and f and g denote matrices and the composition is by matrix multiplication. The order is important because ...
Given its domain and its codomain, a function is uniquely represented by the set of all pairs (x, f (x)), called the graph of the function, a popular means of illustrating the function. [note 1] [4] When the domain and the codomain are sets of real numbers, each such pair may be thought of as the Cartesian coordinates of a point in the plane.
For example, taking the statement x + 1 = 0, if x is substituted with 1, this implies 1 + 1 = 2 = 0, which is false, which implies that if x + 1 = 0 then x cannot be 1. If x and y are integers, rationals, or real numbers, then xy = 0 implies x = 0 or y = 0. Consider abc = 0. Then, substituting a for x and bc for y, we learn a = 0 or bc = 0.
Moreover, a set (family) of real-valued functions on X can actually define a σ-algebra on X generated by all preimages of all Borel sets (or of intervals only, it is not important). This is the way how σ-algebras arise in ( Kolmogorov's ) probability theory , where real-valued functions on the sample space Ω are real-valued random variables .
Examples of unexpected applications of mathematical theories can be found in many areas of mathematics. A notable example is the prime factorization of natural numbers that was discovered more than 2,000 years before its common use for secure internet communications through the RSA cryptosystem . [ 127 ]
In some sources, boldface or double brackets x are used for floor, and reversed brackets x or ]x[for ceiling. [7] [8] The fractional part is the sawtooth function, denoted by {x} for real x and defined by the formula {x} = x − ⌊x⌋ [9] For all x, 0 ≤ {x} < 1. These characters are provided in Unicode: