enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Dihybrid cross - Wikipedia

    en.wikipedia.org/wiki/Dihybrid_cross

    This cross results in the expected phenotypic ratio of 9:3:3:1. Another example is listed in the table below and illustrates the process of a dihybrid cross between pea plants with multiple traits and their phenotypic ratio patterns. Dihybrid crosses are easily visualized using a 4 x 4 Punnett square.

  3. Test cross - Wikipedia

    en.wikipedia.org/wiki/Test_cross

    When conducting a dihybrid test cross, two dominant phenotypic characteristics are selected and crossed with parents displaying double recessive traits. The phenotypic characteristics of the F1 generation are then analyzed. In such a test cross, if the individual being tested is heterozygous, a phenotypic ratio of 1:1:1:1 is typically observed. [7]

  4. Punnett square - Wikipedia

    en.wikipedia.org/wiki/Punnett_square

    The forked-line method (also known as the tree method and the branching system) can also solve dihybrid and multi-hybrid crosses. A problem is converted to a series of monohybrid crosses, and the results are combined in a tree. However, a tree produces the same result as a Punnett square in less time and with more clarity.

  5. Reciprocal cross - Wikipedia

    en.wikipedia.org/wiki/Reciprocal_cross

    In genetics, a reciprocal cross is a breeding experiment designed to test the role of parental sex on a given inheritance pattern. [1] All parent organisms must be true breeding to properly carry out such an experiment. In one cross, a male expressing the trait of interest will be crossed with a female not expressing the trait.

  6. Mendelian inheritance - Wikipedia

    en.wikipedia.org/wiki/Mendelian_inheritance

    Mendel found support for this law in his dihybrid cross experiments. In his monohybrid crosses, an idealized 3:1 ratio between dominant and recessive phenotypes resulted. In dihybrid crosses, however, he found a 9:3:3:1 ratios. This shows that each of the two alleles is inherited independently from the other, with a 3:1 phenotypic ratio for each.

  7. Monohybrid cross - Wikipedia

    en.wikipedia.org/wiki/Monohybrid_cross

    To a casual observer in the monastery garden, the cross appeared no different from the P cross described above: round-seeded peas being crossed with wrinkled-seeded ones. But Mendel predicted that this time he would produce both round and wrinkled seeds and in a 50:50 ratio. He performed the cross and harvested 106 round peas and 101 wrinkled peas.

  8. File:Dihybrid cross.svg - Wikipedia

    en.wikipedia.org/wiki/File:Dihybrid_cross.svg

    Date/Time Thumbnail Dimensions User Comment; current: 12:03, 14 November 2013: 403 × 579 (186 KB): WhiteTimberwolf: fix propagation of spermatozoa genotypes between P and F<sub>1</sub>

  9. Dominance (genetics) - Wikipedia

    en.wikipedia.org/wiki/Dominance_(genetics)

    Autosomal dominant and autosomal recessive inheritance, the two most common Mendelian inheritance patterns. An autosome is any chromosome other than a sex chromosome.. In genetics, dominance is the phenomenon of one variant of a gene on a chromosome masking or overriding the effect of a different variant of the same gene on the other copy of the chromosome.