Search results
Results from the WOW.Com Content Network
Early monociliated ependymal cells are differentiated to multiciliated ependymal cells for their function in circulating cerebrospinal fluid. [3] The basal membranes of these cells are characterized by tentacle-like extensions that attach to astrocytes. The apical side is covered in cilia and microvilli. [4]
Tanycytes are highly specialized ependymal cells found in the third ventricle of the brain, and on the floor of the fourth ventricle. Each tanycyte has a long basal process that extends deep into the hypothalamus. It is possible that their function is to transfer chemical signals from the cerebrospinal fluid to the central nervous system.
The central canal (also known as spinal foramen or ependymal canal) is the cerebrospinal fluid-filled space that runs through the spinal cord. [1] The central canal lies below and is connected to the ventricular system of the brain , from which it receives cerebrospinal fluid, and shares the same ependymal lining.
CSF is mostly produced by specialized ependymal cells in the choroid plexuses of the ventricles of the brain, and absorbed in the arachnoid granulations. It is also produced by ependymal cells in the lining of the ventricles. In humans, there is about 125 mL of CSF at any one time, and about 500 mL is generated every day.
Progenitor ependymal cells are monociliated but they differentiate into multiciliated ependymal cells. [6] [7] Unlike the ependyma, the choroid plexus epithelial layer has tight junctions [8] between the cells on the side facing the ventricle (apical surface). These tight junctions prevent the majority of substances from crossing the cell layer ...
These form the ventricular system of the brain: [8] The neural stem cells of the developing brain, principally radial glial cells, line the developing ventricular system in a transient zone called the ventricular zone. [9] The prosencephalon divides into the telencephalon, which forms the cortex of the developed brain, and the diencephalon.
Ependymal cells: Ependymal cells, also named ependymocytes, line the spinal cord and the ventricular system of the brain. These cells are involved in the creation and secretion of cerebrospinal fluid (CSF) and beat their cilia to help circulate the CSF and make up the blood-CSF barrier. They are also thought to act as neural stem cells. [15] CNS
Tela choroidea. The blood supply of these plexuses is from the posterior inferior cerebellar artery.The lateral ventricles also contains the right and left internal cerebral veins (which drain the choroid plexuses) at its roof (the two veins unite to form the great cerebral vein).