Search results
Results from the WOW.Com Content Network
The reduction of nitro compounds are chemical reactions of wide interest in organic chemistry. The conversion can be effected by many reagents. The nitro group was one of the first functional groups to be reduced. Alkyl and aryl nitro compounds behave differently. Most useful is the reduction of aryl nitro compounds.
The Béchamp reduction (or Béchamp process) is a chemical reaction that converts aromatic nitro compounds to their corresponding anilines using iron as the reductant: [1] 4 C 6 H 5 NO 2 + 9 Fe + 4 H 2 O → 4 C 6 H 5 NH 2 + 3 Fe 3 O 4. This reaction was once a major route to aniline, but catalytic hydrogenation is the preferred method. [2]
Nitroso compounds can be prepared by the reduction of nitro compounds [1] or by the oxidation of hydroxylamines. [2] Ortho-nitrosophenols may be produced by the Baudisch reaction. In the Fischer–Hepp rearrangement, aromatic 4-nitrosoanilines are prepared from the corresponding nitrosamines.
The structure of an organic nitro compound. In organic chemistry, nitro compounds are organic compounds that contain one or more nitro functional groups (−NO 2). The nitro group is one of the most common explosophores (functional group that makes a compound explosive) used globally. The nitro group is also strongly electron-withdrawing.
For textile dying, a typical nitro coupling partner would be disodium 4,4′-dinitrostilbene-2,2′-disulfonate. Typical aniline partners are shown below. Typical aniline partners are shown below. Since anilines are prepared from nitro compounds, some azo dyes are produced by partial reduction of aromatic nitro compounds.
Organic chemistry has a strong tradition of naming a specific reaction to its inventor or inventors and a long list of so-called named reactions exists, conservatively estimated at 1000. A very old named reaction is the Claisen rearrangement (1912) and a recent named reaction is the Bingel reaction (1993).
Zinin reaction or Zinin reduction involves reduction of nitro aromatic compounds to the amines using sodium sulfide. [1] It is used to convert nitrobenzenes to anilines. [2] [3] The reaction selectively reduces nitro groups in the presence of other easily reduced functional groups (e.g., aryl halides and C=C bonds) are present in the molecule.
Nitrosation and nitrosylation are two names for the process of converting organic compounds or metal complexes [1] into nitroso derivatives, i.e., compounds containing the R−NO functionality. The synonymy arises because the R-NO functionality can be interpreted two different ways, depending on the physico-chemical environment: