Search results
Results from the WOW.Com Content Network
For example, one sphere that is described in Cartesian coordinates with the equation x 2 + y 2 + z 2 = c 2 can be described in spherical coordinates by the simple equation r = c. (In this system—shown here in the mathematics convention—the sphere is adapted as a unit sphere, where the radius is set to unity and then can generally be ignored ...
A sphere (from Greek σφαῖρα, sphaîra) [1] is a geometrical object that is a three-dimensional analogue to a two-dimensional circle. Formally, a sphere is the set of points that are all at the same distance r from a given point in three-dimensional space. [2] That given point is the center of the sphere, and r is the sphere's radius.
For example, the equations = = form a parametric representation of the unit circle, where t is the parameter: A point (x, y) is on the unit circle if and only if there is a value of t such that these two equations generate that point.
When calculating the length of a short north-south line at the equator, the circle that best approximates that line has a radius of (which equals the meridian's semi-latus rectum), or 6335.439 km, while the spheroid at the poles is best approximated by a sphere of radius , or 6399.594 km, a 1% difference. So long as a spherical Earth is assumed ...
The 3-sphere is the boundary of a -ball in four-dimensional space. The -sphere is the boundary of an -ball. Given a Cartesian coordinate system, the unit -sphere of radius can be defined as:
The sphere has a radius of 1, and so the side lengths and lower case angles are equivalent (see arc length). The angle A (respectively, B and C ) may be regarded either as the dihedral angle between the two planes that intersect the sphere at the vertex A , or, equivalently, as the angle between the tangents of the great circle arcs where they ...
The length of the curve is given by the formula = | ′ | where | ′ | is the Euclidean norm of the tangent vector ′ to the curve. To justify this formula, define the arc length as limit of the sum of linear segment lengths for a regular partition of [ a , b ] {\displaystyle [a,b]} as the number of segments approaches infinity.
This shows that a great circle is, with respect to distance measurement on the surface of the sphere, a circle: the locus of points all at a specific distance from a center. Each point is associated with a unique great circle, called the polar circle of the point, which is the great circle on the plane through the centre of the sphere and ...